Bài 3.50 trang 134 SBT đại số và giải tích 11


Giải bài 3.50 trang 134 sách bài tập đại số và giải tích 11. Trong các dãy số ...

Đề bài

Trong các dãy số \(\left( {{u_n}} \right)\) sau đây, hãy chọn dãy số giảm

(A)    \({u_n} = \sin n\) ;

(B)   \({u_n} = \dfrac{{{n^2} + 1}}{n}\) ;

(C)   \({u_n} = \sqrt n  - \sqrt {n - 1} \) ;

(D)   \({u_n} = {\left( { - 1} \right)^n}\left( {{2^n} + 1} \right).\)

Phương pháp giải - Xem chi tiết

Dãy số \(\left( {{u_n}} \right)\) được gọi là giảm nếu \({u_{n + 1}} < {u_n},\forall n \in {\mathbb{N}^*}\).

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

Xét đáp án C ta có:

\(\dfrac{{{u_{n + 1}}}}{{{u_n}}}\)  \( = \dfrac{{\sqrt {n + 1}  - \sqrt n }}{{\sqrt n  - \sqrt {n - 1} }}\) \( = \dfrac{1}{{\sqrt {n + 1}  + \sqrt n }}.\dfrac{{\sqrt n  + \sqrt {n - 1} }}{1}\) \( = \dfrac{{\sqrt n  + \sqrt {n - 1} }}{{\sqrt n  + \sqrt {n + 1} }} < 1\) vì \(\sqrt {n - 1}  < \sqrt {n + 1} \)

Do đó \({u_{n + 1}} < {u_n},\forall n \in {\mathbb{N}^*}\) hay dãy số \(\left( {{u_n}} \right)\) là dãy số giảm.

Đáp án: C.

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí