Bài 3.37 trang 132 SBT đại số và giải tích 11


Giải bài 3.37 trang 132 sách bài tập đại số và giải tích 11. Chứng minh rằng ...

Lựa chọn câu để xem lời giải nhanh hơn

Chứng minh rằng

LG a

\({n^5} - n\) chia hết cho 5 với mọi \(n \in N^*\) 

Phương pháp giải:

Để chứng minh một mệnh đề đúng với mọi \(n \in {\mathbb{N}^*}\), ta tiến hành:

- Bước 1: Kiểm tra mệnh đề đúng khi \(n = 1\).

- Bước 2: Giả thiết mệnh đề đúng với một số tự nhiên \(n = k\left( {k \ge 1} \right)\) và chứng minh rằng nó cũng đúng với \(n = k + 1\).

Lời giải chi tiết:

Với \(n = 1\) thì \({n^5} - n = {1^5} - 1 = 0 \vdots 5\) nên mệnh đề đúng.

Giả sử mệnh đề đúng với \(n = k\), nghĩa là \(\left( {{k^5} - k} \right) \vdots 5\). Ta sẽ chứng minh \(\left[ {{{\left( {k + 1} \right)}^5} - \left( {k + 1} \right)} \right] \vdots 5\).

Thật vậy,

\({\left( {k + 1} \right)^5} - \left( {k + 1} \right)\) \( = \left( {{k^5} + 5{k^4} + 10{k^3} + 10{k^2} + 5k + 1} \right) - k - 1\)

\( = \left( {{k^5} - k} \right) + \left( {5{k^4} + 10{k^3} + 10{k^2} + 5k} \right)\)

Vì \(\left( {{k^5} - k} \right) \vdots 5\) và \(\left( {5{k^4} + 10{k^3} + 10{k^2} + 5k} \right) \vdots 5\) nên \({\left( {k + 1} \right)^5} - \left( {k + 1} \right) \vdots 5\)

Vậy ta có đpcm.

LG b

Tổng các lập phương của ba số tự nhiên liên tiếp chia hết cho 9

Phương pháp giải:

Để chứng minh một mệnh đề đúng với mọi \(n \in {\mathbb{N}^*}\), ta tiến hành:

- Bước 1: Kiểm tra mệnh đề đúng khi \(n = 1\).

- Bước 2: Giả thiết mệnh đề đúng với một số tự nhiên \(n = k\left( {k \ge 1} \right)\) và chứng minh rằng nó cũng đúng với \(n = k + 1\).

Lời giải chi tiết:

Đặt \({A_n} = {n^3} + {\left( {n + 1} \right)^3} + {\left( {n + 2} \right)^3},\) dễ thấy \({A_1} \vdots 9.\)

Giả sử đã có \({A_k} \vdots 9\) với \(k \ge 1.\) Ta phải chứng minh \({A_{k + 1}} \vdots 9.\)

Ta có:

\(\begin{array}{l}{A_{k + 1}} = {\left( {k + 1} \right)^3} + {\left( {k + 2} \right)^3} + {\left( {k + 3} \right)^3}\\ = {\left( {k + 1} \right)^3} + {\left( {k + 2} \right)^3} + \left( {{k^3} + 9{k^2} + 27k + 27} \right)\\ = {k^3} + {\left( {k + 1} \right)^3} + {\left( {k + 2} \right)^3} + 9{k^2} + 27k + 27\\ = {A_k} + 9{k^2} + 27k + 27.\end{array}\)

Vì \({A_k} \vdots 9\) và \(9{k^2} + 27k + 27 \vdots 9\) nên \({A_{k + 1}} \vdots 9\).

Vậy ta có đpcm.

LG c

\({n^3} - n\) chia hết cho 6 với mọi \(n \in N^*\)

Phương pháp giải:

Để chứng minh một mệnh đề đúng với mọi \(n \in {\mathbb{N}^*}\), ta tiến hành:

- Bước 1: Kiểm tra mệnh đề đúng khi \(n = 1\).

- Bước 2: Giả thiết mệnh đề đúng với một số tự nhiên \(n = k\left( {k \ge 1} \right)\) và chứng minh rằng nó cũng đúng với \(n = k + 1\).

Lời giải chi tiết:

Đặt \({B_n} = {n^3} - n\).

Với \(n = 1\) thì \({B_1} = {1^3} - 1 = 0 \vdots 6\).

Giả sử ta có \({B_k} \vdots 6,k \ge 1\). Ta cần chứng minh \({B_{k + 1}} \vdots 6\).

Thật vậy, \({B_{k + 1}} = {\left( {k + 1} \right)^3} - \left( {k + 1} \right)\) \( = {k^3} + 3{k^2} + 3k + 1 - k - 1\) \( = \left( {{k^3} - k} \right) + 3{k^2} + 3k\)\( = {B_k} + 3{k^2} + 3k \vdots 3\)

Vậy ta có đpcm.

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.


Góp ý Loigiaihay.com, nhận quà liền tay
Gửi bài