Bài 3.27 trang 156 SBT hình học 10


Giải bài 3.27 trang 156 sách bài tập hình học 10. Cho hai đường tròn (C1)...

Lựa chọn câu để xem lời giải nhanh hơn

Cho hai đường tròn \(\left( {{C_1}} \right)\): \({x^2} + {y^2} - 6x + 5 = 0\) và \(\left( {{C_2}} \right)\): \({x^2} + {y^2} - 12x - 6y + 44 = 0\).

LG a

Tìm tâm và bán kính của \(\left( {{C_1}} \right)\) và \(\left( {{C_2}} \right)\).

Phương pháp giải:

 Đường tròn \({x^2} + {y^2} - 2ax - 2by + c = 0\) có tâm \(I\left( {a;b} \right)\) và bán kính \(R = \sqrt {{a^2} + {b^2} - c} \).

Giải chi tiết:

 \(\left( {{C_1}} \right)\) có tâm \({I_1}\left( {3;0} \right)\) và bán kính \({R_1} = 2\);

 \(\left( {{C_2}} \right)\) có tâm \({I_2}\left( {6;3} \right)\) và bán kính \({R_2} = 1\).

LG b

Lập phương trình tiếp tuyến chung của \(\left( {{C_1}} \right)\) và \(\left( {{C_2}} \right)\). 

Phương pháp giải:

Xét hai trường hợp tiếp tuyến \(\Delta \) có hệ số góc \(k\) và không có hệ số góc.

Chú ý: Đường thẳng \(\Delta \) là tiếp tuyến với đường tròn \(\left( C \right)\) nếu \(d\left( {I,\Delta } \right) = R\).

Giải chi tiết:

 Xét đường thẳng \(\Delta \) có phương trình: \(y = kx + m\) hay \(kx - y + m = 0\).

Ta có: \(\Delta \) tiếp xúc với \(\left( {{C_1}} \right)\) và \(\left( {{C_2}} \right)\) khi và chỉ khi \(\left\{ \begin{array}{l}d({I_1},\Delta ) = {R_1}\\d({I_2},\Delta ) = {R_2}\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}\dfrac{{\left| {3k + m} \right|}}{{\sqrt {{k^2} + 1} }} = 2\,\,(1)\\\dfrac{{\left| {6k - 3 + m} \right|}}{{\sqrt {{k^2} + 1} }} = 1\,\,(2)\end{array} \right.\)

Từ (1) và (2) suy ra \(\left| {3k + m} \right| = 2\left| {6k - 3 + m} \right|\).

Trường hợp 1: \(3k + m = 2(6k - 3 + m)\)\( \Leftrightarrow m = 6 - 9k\)  (3)

Thay vào (2) ta được \(\left| {6k - 3 + 6 - 9k} \right| = \sqrt {{k^2} + 1} \)\( \Leftrightarrow \left| {3 - 3k} \right| = \sqrt {{k^2} + 1} \)

\( \Leftrightarrow 9 - 18k + 9{k^2} = {k^2} + 1\)\( \Leftrightarrow 8{k^2} - 18k + 8 = 0\)

\( \Leftrightarrow 4{k^2} - 9k + 4 = 0\)\( \Leftrightarrow \left[ \begin{array}{l}{k_1} = \dfrac{{9 + \sqrt {17} }}{8}\\{k_2} = \dfrac{{9 - \sqrt {17} }}{8}\end{array} \right.\)

Thay giá trị của k vào (3) ta tính được \(\left[ \begin{array}{l}{k_1} = 6 - 9{k_1}\\{k_2} = 6 - 9{k_2}\end{array} \right.\)

Vậy ta được hai tiếp tuyến \({\Delta _1}:y = {k_1}x + 6 - 9{k_1};\)\({\Delta _2}:y = {k_2}x + 6 - 9{k_2}.\)

Trường hợp 2: \(3k + m =  - 2(6k - 3 + m)\)\( \Leftrightarrow 3m = 6 - 15k\)\( \Leftrightarrow m = 2 - 5k\) (4)

Thay vào (2) ta được \(\left| {6k - 3 + 2 - 5k} \right| = \sqrt {{k^2} + 1} \)\( \Leftrightarrow \left| {k - 1} \right| = \sqrt {{k^2} + 1} \)

\( \Leftrightarrow {(k - 1)^2} = {k^2} + 1\)\( \Leftrightarrow {k^2} - 2k + 1 = {k^2} + 1\)\( \Leftrightarrow k = 0.\)

Thay giá trị của \(k\) vào (4) ta được \(m = 2\).

Vậy ta được tiếp tuyến \({\Delta _3}:y = 2.\)    

Xét đường thẳng \({\Delta _4}\) vuông góc với \(Ox\) tại \({x_0}\):\({\Delta _4}:x - {x_0} = 0.\)

\({\Delta _4}\) tiếp xúc với \(\left( {{C_1}} \right)\) và \(\left( {{C_2}} \right)\) khi và chỉ khi

\(\left\{ \begin{array}{l}d({I_1},{\Delta _4}) = {R_1}\\d({I_2},{\Delta _4}) = {R_2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left| {3 - {x_0}} \right| = 2\\\left| {6 - {x_0}} \right| = 1\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}{x_0} = 1\\{x_0} = 5\end{array} \right.\\\left[ \begin{array}{l}{x_0} = 5\\{x_0} = 7\end{array} \right.\end{array} \right. \Leftrightarrow {x_0} = 5\)

Vậy ta được tiếp tuyến \({\Delta _4}:x - 5 = 0\).

Vậy hai đường tròn \(\left( {{C_1}} \right)\) và \(\left( {{C_2}} \right)\) có bốn tiếp tuyến chung \({\Delta _1}\), \({\Delta _2}\), \({\Delta _3}\)và \({\Delta _4}\).

Loigiaihay.com 

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
3.8 trên 6 phiếu

Các bài liên quan: - Bài 2: Phương trình đường tròn

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài