Bài 3.26 trang 156 SBT hình học 10


Đề bài

Viết phương trình tiếp tuyến của đường tròn \(\left( C \right)\) có phương trình \({x^2} + {y^2} - 8x - 6y = 0\) biết rằng tiếp tuyến đó đi qua gốc tọa độ \(O\).

Phương pháp giải - Xem chi tiết

Nhận xét: Gốc tọa độ \(O\) thuộc đường tròn nên tiếp tuyến đi qua \(O\) và nhận \(\overrightarrow {OI} \) làm VTPT.

Lời giải chi tiết

Đường tròn \(\left( C \right)\): \({x^2} + {y^2} - 8x - 6y = 0\) có tâm \(I(4;3)\) và bán kính \(R = 5\).

Cách 1: Do tọa độ \(O(0;0)\) thỏa mãn phương trình của \(\left( C \right)\) nên điểm \(O\) nằm trên \(\left( C \right)\).

Tiếp tuyến với \(\left( C \right)\) tại \(O\) có vectơ pháp tuyến \(\overrightarrow n  = \overrightarrow {OI}  = (4;3)\).

Suy ra \(\Delta \) có phương trình \(4x + 3y = 0.\)

Cách 2: Xét đường thẳng \(\Delta \) đi qua gốc tọa độ \(O \) và có hệ số góc \(k\), \(\Delta \) có phương trình \(y - kx = 0\).

Ta có: \(\Delta \) tiếp xúc với \(\left( C \right)\)\( \Leftrightarrow d(I,\Delta ) = R\)\( \Leftrightarrow \dfrac{{\left| {3 - 4k} \right|}}{{\sqrt {{k^2} + 1} }} = 5\)\( \Leftrightarrow {\left( {3 - 4k} \right)^2} = 25({k^2} + 1)\)

\( \Leftrightarrow 9 + 16{k^2} - 24k = 25{k^2} + 25\)\( \Leftrightarrow 9{k^2} + 24k + 16 = 0\)\( \Leftrightarrow k =  - \dfrac{4}{3}.\)

Vậy ta được phương trình tiếp tuyến là: \(y + \dfrac{4}{3}x = 0\) hay \(4x + 3y = 0\).

Trường hợp \(\Delta \) không có hệ số góc \(\left( {\Delta  \bot Ox} \right)\) có phương trình dạng \(x + c = 0\).

\(O\left( {0;0} \right) \in \Delta \) \( \Rightarrow 0 + c = 0 \Leftrightarrow c = 0\) ta được đường thẳng \(x = 0\).

Dễ thấy \(d\left( {I,\Delta } \right) = 4 \ne 5 = R\) nên \(\Delta \) không tiếp xúc với \(\left( C \right)\).

Vậy trường này không thỏa mãn nên chí có duy nhất một tiếp tuyến cần tìm là \(4x + 3y = 0\).

Loigiaihay.com


Bình chọn:
3.8 trên 4 phiếu

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.