Bài 3.28 trang 163 SBT hình học 10


Giải bài 3.28 trang 163 sách bài tập hình học 10. Viết phương trình chính tắc của elip (E) trong mỗi trường hợp sau...

Lựa chọn câu để xem lời giải nhanh hơn

Viết phương trình chính tắc của elip \((E)\) trong mỗi trường hợp sau:

LG a

Độ dài trục nhỏ bằng \(12\) và tiêu cự bằng \(16\);

Phương pháp giải:

 Sử dụng công thức \({a^2} = {b^2} + {c^2}\) tính \(a\), từ đó suy ra phương trình \(\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\).

Giải chi tiết:

Ta có: \(2b = 12 \Rightarrow b = 6\).

Tiêu cự \(2c = 16 \Leftrightarrow c = 8\) \( \Rightarrow {a^2} = {b^2} + {c^2} = {6^2} + {8^2} = 100\)

Vậy \((E):\dfrac{{{x^2}}}{{100}} + \dfrac{{{y^2}}}{{36}} = 1\).

LG b

Một tiêu điểm là \((12;0)\) và điểm \((13;0)\) nằm trên elip.

Phương pháp giải:

Tìm \(a,c\) và tính \(b\) dựa vào công thức \({a^2} = {b^2} + {c^2}\), từ đó suy ra phương trình \(\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\).

Giải chi tiết:

Tiêu điểm \(\left( {12;0} \right) \Rightarrow c = 12\).

Điểm \(\left( {13;0} \right)\) thuộc elip nên \(a = 13\).

Ta có: \({a^2} = {b^2} + {c^2}\) \( \Rightarrow {13^2} = {b^2} + {12^2} \Leftrightarrow {b^2} = 25\)

Vậy elip \((E):\dfrac{{{x^2}}}{{169}} + \dfrac{{{y^2}}}{{25}} = 1\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 3: Phương trình đường elip

>> Học trực tuyến Lớp 10 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài