Bài 3.33 trang 164 SBT hình học 10


Giải bài 3.33 trang 164 sách bài tập hình học 10. Viết phương trình chính tắc của elip (E)...

Lựa chọn câu để xem lời giải nhanh hơn

Viết phương trình chính tắc của elip \((E)\) có hai tiêu điểm \({F_1}\) và \({F_2}\) biết

LG a

(E) đi qua hai điểm \(M\left( {4;\dfrac{9}{5}} \right)\) và \(N\left( {3;\dfrac{{12}}{5}} \right)\);

Phương pháp giải:

- Gọi phương trình elip \(\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\).

- Thay tọa độ các điểm \(M,N\) vào \(\left( E \right)\), lập hệ phương trình ẩn \(a,b\).

- Giải hệ và kết luận.

Lời giải chi tiết:

 Xét elip (E) : \(\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\).

(E) đi qua \(M\left( {4;\dfrac{9}{5}} \right)\)và \(N\left( {3;\dfrac{{12}}{5}} \right)\) nên thay tọa độ của M và vào phương trình của (E) ta được:

\(\left\{ \begin{array}{l}\dfrac{{16}}{{{a^2}}} + \dfrac{{81}}{{25{b^2}}} = 1\\\dfrac{9}{{{a^2}}} + \dfrac{{144}}{{25{b^2}}} = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{a^2} = 25\\{b^2} = 9.\end{array} \right.\)

Vậy phương trình của (E) là : \(\dfrac{{{x^2}}}{{25}} + \dfrac{{{y^2}}}{9} = 1\).

LG b

 (E) đi qua \(M\left( {\dfrac{3}{{\sqrt 5 }};\dfrac{4}{{\sqrt 5 }}} \right)\) và tam giác \(M{F_1}{F_2}\) vuông tại \(M\).

Phương pháp giải:

 - Gọi phương trình elip \(\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\).

- Sử dụng chú ý \(\widehat {{F_1}M{F_2}} = {90^0}\) \( \Leftrightarrow OM = O{F_1} = O{F_2} = c\) tìm \(c\).

Lời giải chi tiết:

Xét elip (E) : \(\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\).

Vì \(M\left( {\dfrac{3}{{\sqrt 5 }};\dfrac{4}{{\sqrt 5 }}} \right) \in (E)\) nên \(\dfrac{9}{{5{a^2}}} + \dfrac{{16}}{{5{b^2}}} = 1\).  (1)

Ta có : \(\widehat {{F_1}M{F_2}} = {90^ \circ } \Rightarrow OM = O{F_1}\) (\(MO\) là trung tuyến của tam giác vuông \(M{F_1}{F_2}\))

\( \Rightarrow {c^2} = OF_1^2 = O{M^2} = \dfrac{9}{5} + \dfrac{{16}}{5} = 5\) và \({a^2} = {b^2} + {c^2} = {b^2} + 5\).

Thay vào (1) ta được: \(\dfrac{9}{{5\left( {{b^2} + 5} \right)}} + \dfrac{{16}}{{5{b^2}}} = 1\) \( \Leftrightarrow 9{b^2} + 16\left( {{b^2} + 5} \right) = 5{b^2}({b^2} + 5)\)

\( \begin{array}{l}
\Leftrightarrow 9{b^2} + 16{b^2} + 80 = 5{b^4} + 25{b^2}\\
\Leftrightarrow 5{b^4} = 80\\
\Leftrightarrow {b^4} = 16\\
\Leftrightarrow {b^2} = 4\\
\Rightarrow {a^2} = {b^2} + 5 = 4 + 5 = 9
\end{array}\)

Vậy phương trình chính tắc của (E) là \(\dfrac{{{x^2}}}{9} + \dfrac{{{y^2}}}{4} = 1\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.