Bài 3.29 trang 163 SBT hình học 10


Giải bài 3.29 trang 163 sách bài tập hình học 10. Tìm tọa độ các tiêu điểm, các đỉnh, độ dài các trục của mỗi elip có phương trình sau...

Lựa chọn câu để xem lời giải nhanh hơn

Tìm tọa độ các tiêu điểm, các đỉnh, độ dài các trục của mỗi elip có phương trình sau:

LG a

\(4{x^2} + 9{y^2} = 36\). 

Phương pháp giải:

- Xác định \(a,b\) từ phương trình, từ đó suy ra \(c = \sqrt {{a^2} - {b^2}} \).

Lời giải chi tiết:

Chia cả hai vế của phương trình cho \(36\) ta được: \((E):\dfrac{{{x^2}}}{9} + \dfrac{{{y^2}}}{4} = 1\).

Ta có: \(a = 3,b = 2\) \( \Rightarrow c = \sqrt {{a^2} - {b^2}}  = \sqrt 5 \)

- Hai tiêu điểm: \({F_1}\left( { - \sqrt 5 ;0} \right)\), \({F_2}\left( {\sqrt 5 ;0} \right)\).

- Bốn đỉnh: \({A_1}\left( { - 3;0} \right)\), \({A_2}\left( {3;0} \right)\),\({B_1}\left( {0; - 2} \right)\), \({B_2}\left( {0;2} \right)\).

- Trục lớn: \({A_1}{A_2} = 6\).

- Trục nhỏ: \({B_1}{B_2} = 4\).

LG b

\({x^2} + 4{y^2} = 4\).

Phương pháp giải:

- Xác định \(a,b\) từ phương trình, từ đó suy ra \(c = \sqrt {{a^2} - {b^2}} \).

Lời giải chi tiết:

Chia cả hai vế của phương trình cho \(4\) ta được: \((E):\dfrac{{{x^2}}}{4} + \dfrac{{{y^2}}}{1} = 1\).

Ta có: \(a = 2,b = 1\) \( \Rightarrow c = \sqrt {{2^2} - {1^2}}  = \sqrt 3 \)

- Hai tiêu điểm: \({F_1}\left( { - \sqrt 3 ;0} \right)\), \({F_2}\left( {\sqrt 3 ;0} \right)\).

- Bốn đỉnh: \({A_1}\left( { - 2;0} \right)\), \({A_2}\left( {2;0} \right)\),\({B_1}\left( {0; - 1} \right)\), \({B_2}\left( {0;1} \right)\).

- Trục lớn: \({A_1}{A_2} = 4\).

- Trục nhỏ: \({B_1}{B_2} = 2\).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 3: Phương trình đường elip

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.


Góp ý Loigiaihay.com, nhận quà liền tay
Gửi bài