Bài 1.54 trang 43 SBT hình học 10


Đề bài

Cho tam giác \(ABC\) có trung tuyến \(AM\). Trên cạnh \(AC\) lấy hai điểm \(E\) và \(F\) sao cho \(AE = EF = FC\). \(BE\) cắt trung tuyến \(AM\) tại \( N\). Tính \(\overrightarrow {AE}  + \overrightarrow {AF}  + \overrightarrow {AN}  + \overrightarrow {MN} \).

Phương pháp giải - Xem chi tiết

Dựng hình, thay các véc tơ trong tổng thành các véc tơ bằng nó và thực hiện cộng véc tơ theo quy tắc ba điểm.

Lời giải chi tiết

Ta có \(\overrightarrow {AE}  = \overrightarrow {FC} \)

Vì \(MF // BE\) nên \( N\) là trung điểm của \( AM\), suy ra \(\overrightarrow {AN}  + \overrightarrow {MN}  = \overrightarrow 0 \)

Do đó \(\overrightarrow {AE}  + \overrightarrow {AF}  + \overrightarrow {AN}  + \overrightarrow {MN} \)\( = \overrightarrow {AF}  + \overrightarrow {FC}  = \overrightarrow {AC} \)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Ôn tập chương 1: Véc tơ

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.