Bài 1.52 trang 43 SBT hình học 10


Giải bài 1.52 trang 43 sách bài tập hình học 10. Cho lục giác đều ABCDEF và M là một điểm tùy ý. Chứng minh rằng:...

Đề bài

Cho lục giác đều \(ABCDEF\) và \(M\) là một điểm tùy ý. Chứng minh rằng: \(\overrightarrow {MA}  + \overrightarrow {MC}  + \overrightarrow {ME} \)\( = \overrightarrow {MB}  + \overrightarrow {MD}  + \overrightarrow {MF} \)

Phương pháp giải - Xem chi tiết

Sử dụng quy tắc trọng tâm \(\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  = 3\overrightarrow {MG} \) với \(G\) là trọng tâm của \(\Delta ABC\) và \(M\) là một điểm bất kì.

Lời giải chi tiết

Gọi \(O\) là tâm lục giác đều.
Khi đó \(O\) là trọng tâm của các tam giác đều \(ACE\) và \(BDF\).

Do đó, với mọi điểm \(M\) ta có:

\(\overrightarrow {MA}  + \overrightarrow {MC}  + \overrightarrow {ME}  = 3\overrightarrow {MO} \)

\(\overrightarrow {MB}  + \overrightarrow {MD}  + \overrightarrow {MF}  = 3\overrightarrow {MO} \)

Vậy ta có đẳng thức cần chứng minh.

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Ôn tập chương 1: Véc tơ

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài