Câu hỏi 2 trang 81 SGK Đại số và Giải tích 11

Bình chọn:
4 trên 5 phiếu

Giải câu hỏi 2 trang 81 SGK Đại số và Giải tích 11. Chứng minh rằng...

Đề bài

Chứng minh rằng với n ∈ N* thì

\(\displaystyle 1 + 2 + 3 + … + n = {{n(n + 1)} \over 2}\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

- Xét với \(n=1\), chứng minh đẳng thức đúng với \(n=1\).

- Giả sử đẳng thức đúng với \(n=k\ge 1\), chứng minh đẳng thức đúng với \(n=k+1\).

Lời giải chi tiết

- Khi \(n = 1, VT = 1\)

\(\displaystyle VP = {{1(1 + 1)} \over 2} = 1\)

- Giả sử đẳng thức đúng với \(n = k ≥ 1\), nghĩa là:

\(\displaystyle{S_k} = 1 + 2 + 3 + ... + k = {{k(k + 1)} \over 2}\)

Ta phải chứng minh rằng đẳng thức cũng đúng với \(n = k + 1\), tức là:

\(\displaystyle {S_{k + 1}} = 1 + 2 + 3 + ... + k + (k + 1)\) \(\displaystyle  = {{(k + 1)(k + 2)} \over 2}\)

Thật vậy, từ giả thiết quy nạp ta có:

\(\displaystyle{S_{k + 1}} = {S_k} + (k + 1) \) \(\displaystyle = {{k(k + 1)} \over 2} + (k + 1)\)

\(\displaystyle = {{k(k + 1) + 2(k + 1)} \over 2}\) \(\displaystyle ={{(k + 1)(k + 2)} \over 2}\)

Vậy đẳng thức đúng với mọi n ∈ N*

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

>>Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Góp ý Loigiaihay.com, nhận quà liền tay