Câu hỏi 2 trang 81 SGK Đại số và Giải tích 11


Chứng minh rằng với n thuộc N* thì:

Đề bài

Chứng minh rằng với \(n \in N*\) thì

\(\displaystyle 1 + 2 + 3 + … + n = {{n(n + 1)} \over 2}\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

- Xét với \(n=1\), chứng minh đẳng thức đúng với \(n=1\).

- Giả sử đẳng thức đúng với \(n=k\ge 1\), chứng minh đẳng thức đúng với \(n=k+1\).

Lời giải chi tiết

- Khi \(n = 1, VT = 1\)

\(\displaystyle VP = {{1(1 + 1)} \over 2} = 1\)

- Giả sử đẳng thức đúng với \(n = k ≥ 1\), nghĩa là:

\(\displaystyle{S_k} = 1 + 2 + 3 + ... + k = {{k(k + 1)} \over 2}\)

Ta phải chứng minh rằng đẳng thức cũng đúng với \(n = k + 1\), tức là:

\(\displaystyle {S_{k + 1}} = 1 + 2 + 3 + ... + k + (k + 1)\) \(\displaystyle  = {{(k + 1)(k + 2)} \over 2}\)

Thật vậy, từ giả thiết quy nạp ta có:

\(\displaystyle{S_{k + 1}} = {S_k} + (k + 1) \) \(\displaystyle = {{k(k + 1)} \over 2} + (k + 1)\)

\(\displaystyle = {{k(k + 1) + 2(k + 1)} \over 2}\) \(\displaystyle ={{(k + 1)(k + 2)} \over 2}\)

Vậy đẳng thức đúng với mọi  \(n \in N*\)

Loigiaihay.com


Bình chọn:
4.4 trên 10 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí