Bài 5 trang 83 SGK Đại số và Giải tích 11

Bình chọn:
4.5 trên 8 phiếu

Giải bài 5 trang 83 SGK Đại số và Giải tích 11. Chứng minh rằng

Đề bài

Chứng minh rằng số đường chéo của một đa giác lồi \(n\) cạnh là \(\displaystyle {{n(n - 3)} \over 2}\)

Phương pháp giải - Xem chi tiết

Ta chứng minh khẳng định đúng với mọi \(n \in{\mathbb N}^*\), \(n ≥ 4\).

Sử dụng phương pháp quy nạp toán học để chứng minh.

Lời giải chi tiết

Ta chứng minh khẳng định đúng với mọi \(n \in{\mathbb N}^*\), \(n ≥ 4\).

*) Với \(n = 4\), ta có tứ giác nên nó có hai đường chéo.

Mặt khác thay \(n = 4\) vào công thức, ta có số đường chéo của tứ giác theo công thức là: \(\displaystyle {{4(4 - 3)} \over 2} = 2\)

Vậy khẳng định đúng với \(n= 4\).

*) Giả sử khẳng định đúng với \(n = k ≥ 4\), tức là đa giác lồi \(k\) cạnh có số đường chéo là \(\displaystyle {{k(k - 3)} \over 2}\)

*) Ta phải chứng minh khẳng định đúng với \(n = k + 1\).
Nghĩa là phải chứng minh đa giác lồi \(k + 1\) cạnh có số đường chéo là \(\displaystyle {{(k + 1)((k + 1) - 3)} \over 2}\)
Xét đa giác lồi \(k + 1\) cạnh 
Nối \(A_1\) và \(A_k\), ta được đa giác \(k\) cạnh \(A_1A_2...A_k\) có \(\displaystyle {{k(k - 3)} \over 2}\) đường chéo (giả thiết quy nạp). Nối \(A_{k+1}\) với các đỉnh \(A_1,A_2,...,A_{k-1}\), ta được thêm \(k -2\) đường chéo, ngoài ra \(A_1A_k\) cũng là một đường chéo.

Vậy số đường chéo của đa giác \(k + 1\) cạnh là

\(\displaystyle {{k(k - 3)} \over 2}+ k - 2 + 1\) \(\displaystyle ={{{k^2} - k - 2} \over 2} \) \(\displaystyle = {{(k + 1)((k + 1) - 3)} \over 2}\)

Như vậy, khẳng định cũng đúng với đa giác \(k + 1\) cạnh

Vậy bài toán đã được chứng minh.

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

Các bài liên quan: - Bài 1. Phương pháp quy nạp toán học

>>Học trực tuyến luyện thi THPTQG, Đại học 2020, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới nâng cao.