Bài 5 trang 76 SGK Đại số và Giải tích 11

Bình chọn:
4.3 trên 10 phiếu

Giải bài 5 trang 76 SGK Đại số và Giải tích 11. Xếp ngẫu nhiên ba bạn nam và ba bạn nữ ngồi vào sáu ghế kê theo hàng ngang. Tìm xác suất sao cho:

Đề bài

Xếp ngẫu nhiên ba bạn nam và ba bạn nữ ngồi vào sáu ghế kê theo hàng ngang. Tìm xác suất sao cho:

a) Nam, nữ ngồi xen kẽ nhau

b) Ba bạn nam ngồi cạnh nhau

Phương pháp giải - Xem chi tiết

a) Đánh số thứ tự ghế và chọn ghế sao cho nam, nữ ngồi xen kẽ nhau.

b) Sử dụng quy tắc buộc, buộc ba bạn nam lại và coi đó là 1 phần tử.

Lời giải chi tiết

Số cách xếp \(3\) nam và \(3\) nữ vào \(6\) ghế là \(6!\) Cách.

Suy ra: \(n(\Omega ) = 6! = 720\)

a) Ta gọi \(A\) là biến cố : “Nam, nữ ngồi xen kẽ nhau”

Ta đánh số ghế như sau:

1

2

3

4

5

6

 

Trường hợp 1:

+ Nam ngồi ghế số \(1, 3, 5\) suy ra có \(3!\) cách xếp

+ Nữ ngồi ghế số \(2, 4, 6\) suy ra có \(3!\) cách xếp

Suy ra trường hợp 1 có \(3!.3! = 36\) cách xếp

Trường hợp 2:

+ Nữ ngồi ghế số \(1, 3, 5\) suy ra có \(3!\) cách xếp

+ Nam ngồi ghế số \(2, 4, 6\) suy ra có \(3!\) cách xếp

Suy ra trường hợp 1 có \(3!.3! = 36\) cách xếp

Suy ra:

\(N(A) = 3!.3! + 3!.3! = 36 + 36 = 72\) cách xếp.

Vậy \(\displaystyle P(A) = {{n(A)} \over {n(\Omega )}} = {{72} \over {720}} = {1 \over {10}} = 0,1\)

b) Gọi biến cố \(B\): “Ba bạn nam ngồi cạnh nhau”

Xem \(3\) bạn nam như một phần tử \(N\) và \(N\) cùng \(3\) bạn nữ được xem như ngồi vào \(4\) ghế được đánh số như sau:

1

2

3

4

 

 

Số cách xếp \(N\) và \(3\) nữ vào \(4\) ghế là \(4!\)

Mỗi cách hoán vị \(3\) nam cho nhau trong cùng một vị trí ta có thêm \(3!\) cách xếp khác nhau.

Suy ra \(n(B) = 4!.3!=144\)

Vậy : \(\displaystyle P(B) = {{n(B)} \over {n(\Omega )}} = {{144} \over {720}} = {1 \over 5} = 0,2\)

Loigiaihay.com

 

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

>>Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu