Giải SBT toán hình học và giải tích 12 nâng cao
Bài 3, 4. Lôgarit, lôgarit thập phân và lôgarit tự nhiên
Câu 2.53 trang 77 sách bài tập Giải tích 12 Nâng cao>
Cho hai số dương a và b .Chứng minh rằng
Cho hai số dương a và b .Chứng minh rằng
LG a
\({a^{\log b}} = {b^{\log a}}\)
Lời giải chi tiết:
\({a^{\log b}} = {b^{\log a}} \Leftrightarrow \log {a^{\log b}} = \log {b^{\log a}}\)
\( \Leftrightarrow {\mathop{\rm logb}\nolimits} .{\mathop{\rm loga}\nolimits} = {\mathop{\rm loga}\nolimits} .{\mathop{\rm logb}\nolimits} \)
Đẳng thức cuối cùng đúng suy ra đẳng thức đầu cũng đúng.
LG b
\({a^{lnb}} = {b^{\ln a}}.\)
Lời giải chi tiết:
\({a^{\ln b}} = {b^{\ln a}} \Leftrightarrow \ln {a^{\ln b}} = \ln {b^{\ln a}}\)
\( \Leftrightarrow {\mathop{\rm lnb}\nolimits} .{\mathop{\rm ln a}\nolimits} = {\mathop{\rm lna}\nolimits} .{\mathop{\rm lnb}\nolimits} \)
Đẳng thức cuối cùng đúng suy ra đẳng thức đầu cũng đúng.
Loigiaihay.com
- Bài 1.1 trang 10 SBT Giải tích 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 trang 16 SBT Hình học 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 trang 67 SBT Hình học 12 Nâng cao
- Câu 4.25 trang 181 sách bài tập Giải tích 12 Nâng cao
- Câu 23 trang 211 sách bài tập Giải tích 12 Nâng cao




