Câu 2.52 trang 77 sách bài tập Giải tích 12 Nâng cao


Đề bài

Cho a, b là độ dài hai cạnh góc vuống, c là độ dài cạnh huyền của một tam giác vuông ,trong đó \(c - b \ne 1\) và \(c + b \ne 1\) .

Chứng minh rằng

  \({\log _{c + b}}a + {\log _{c - b}}a = 2{\log _{c - b}}a.{\log _{c - b}}a\) .

Lời giải chi tiết

Áp dụng định lí Py-ta-go: \({a^2} = {c^2} - {b^2} = \left( {c + b} \right).\left( {c - b} \right)\) và lưu ý rằng \({\log _\alpha }\beta  = {1 \over {{{\log }_\beta }\alpha }}\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.


Hỏi bài