Bài 3 trang 60 SGK Hình học 11

Bình chọn:
4.2 trên 30 phiếu

Giải bài 3 trang 60 SGK Hình học 11. Cho tứ diện ABCD. Gọi M, N lần lượt là trung đểm của các cạnh AB, CD và G là trung điểm của đoạn MN

Đề bài

Cho tứ diện \(ABCD\). Gọi \(M, N\) lần lượt là trung đểm của các cạnh \(AB, CD\) và \(G\) là trung điểm của đoạn \(MN\)

a) Tìm giao điểm \(A'\) của đường thẳng \(AG\) và mặt phẳng \((BCD)\)

b) Qua \(M\) kẻ đường thẳng \(Mx\) song song với \(AA'\) và \(Mx\) cắt \((BCD)\) tại \(M'\). Chứng minh \(B, M', A'\) thẳng hàng và \(BM' = M'A' = A'N\).

c) Chứng minh \(GA = 3 GA'\).

Phương pháp giải - Xem chi tiết

a) Trong \((ABN)\): Gọi \(A'=AG  \cap BN\).

b) Sử dụng định lí đường trung bình của tam giác.

c) Sử dụng tính chất đường trung bình của tam giác.

Lời giải chi tiết

a) Trong \((ABN)\): Gọi \(A'=AG  \cap BN\)

\( \Rightarrow A' \in BN\), \(BN \subset (BCD)\).

\( \Rightarrow A' \in (BCD) \Rightarrow  A' = AG \cap (BCD)\)

b) Ta có: \(\left\{ \begin{array}{l}MM'//AA'\\AA' \subset \left( {ABN} \right)\\M \in AB \subset \left( {ABN} \right)\end{array} \right. \) \(\Rightarrow MM' \subset \left( {ABN} \right)\)

Suy ra \(\left\{ \begin{array}{l}M' \in \left( {ABN} \right)\\M' \in \left( {BCD} \right)\end{array} \right.\) \( \Rightarrow M' \in AN = \left( {ABN} \right) \cap \left( {BCD} \right)\) hay \(M',A',B\) thẳng hàng.

*) Xét tam giác \(NMM'\) có:

+) \(G\) là trung điểm của \(NM\).

+) \(GA'//MM'\)

\(\Rightarrow A'\) là trung điểm của \(NM'\)

Xét tam giác \(BAA'\) có:

+) \(M \) là trung điểm của \(AB\) 

+) \(MM'//AA'\)

\(\Rightarrow M'\) là trung điểm của \(BA'\)

Do đó: \(BM'=M'A'=A'N\).

c) Ta có \(\displaystyle GA'={1\over 2} MM'\), \(\displaystyle MM'={1\over 2} AA'\).

\(GA = \dfrac{3}{4}AA' \Rightarrow \dfrac{{GA'}}{{GA}} = \dfrac{{\dfrac{1}{4}AA'}}{{\dfrac{3}{4}AA'}} = \dfrac{1}{3} \) \(\Rightarrow GA = 3GA'\)

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

Bài 2 trang 59 SGK Hình học 11 Bài 2 trang 59 SGK Hình học 11

Giải bài 2 trang 59 SGK Hình học 11. Cho tứ diện ABCD và ba điểm P, Q, R lần lượt trên ba cạnh AB, CD, BC. Tìm giao điểm S của AD và mặt phẳng (PQR) trong hai trường hợp sau đây.

Xem chi tiết
Bài 1 trang 59 SGK Hình học 11 Bài 1 trang 59 SGK Hình học 11

Giải bài 1 trang 59 SGK Hình học 11. Cho tứ diện ABCD. Gọi P, Q, R, S là bốn điểm lần lượt lấy trên bốn cạnh AB, BC, CD, DA. Chứng minh rằng nếu bốn điểm P, Q, R, S đồng phẳng thì

Xem chi tiết
Câu hỏi 3 trang 57 SGK Hình học 11 Câu hỏi 3 trang 57 SGK Hình học 11

Giải câu hỏi 3 trang 57 SGK Hình học 11. Cho hai mặt phẳng α và β. Một mặt phẳng λ cắt α và β lần lượt theo các giao tuyến a và b...

Xem chi tiết
Câu hỏi 2 trang 56 SGK Hình học 11 Câu hỏi 2 trang 56 SGK Hình học 11

Giải câu hỏi 2 trang 56 SGK Hình học 11. Cho tứ diện ABCD, chứng minh hai đường thẳng AB và CD chéo nhau...

Xem chi tiết
Lý thuyết cấp số cộng Lý thuyết cấp số cộng

1. Định nghĩa

Xem chi tiết
Lý thuyết phép vị tự Lý thuyết phép vị tự

Phép vị tự biến tâm vị tự thành chính nó Khi k=1, phép vị tự là phép đồng nhất Khi k = -1, phép vị tự là phép đối xứng qua tâm vị tự

Xem chi tiết
Bài 3 trang 35 SGK Hình học 11 Bài 3 trang 35 SGK Hình học 11

Giải bài 3 trang 35 SGK Hình học 11. Trong mặt phẳng Oxy cho đường thẳng d có phương trình 2x - y + 1 = 0. Để phép tịnh tiến theo vectơ v biến d thành chính nó

Xem chi tiết
Lý thuyết hàm số lượng giác Lý thuyết hàm số lượng giác

1. Hàm số y = sin x và hàm số y = cos x

Xem chi tiết

>>Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Gửi văn hay nhận ngay phần thưởng