Bài 2 trang 59 SGK Hình học 11

Bình chọn:
4.3 trên 24 phiếu

Giải bài 2 trang 59 SGK Hình học 11. Cho tứ diện ABCD và ba điểm P, Q, R lần lượt trên ba cạnh AB, CD, BC. Tìm giao điểm S của AD và mặt phẳng (PQR) trong hai trường hợp sau đây.

Đề bài

Cho tứ diện \(ABCD\) và ba điểm \(P, Q, R\) lần lượt trên ba cạnh \(AB, CD, BC\). Tìm giao điểm \(S\) của \(AD\) và mặt phẳng \((PQR)\) trong hai trường hợp sau đây.

a) \(PR\) song song với \(AC\)

b) \(PR\) cắt \(AC\)

Phương pháp giải - Xem chi tiết

Sử dụng định lí 2 (về giao tuyến của ba mặt phẳng):

Nếu ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến ấy hoặc đồng quy hoặc đôi một song song với nhau.

Lời giải chi tiết

a) Nếu \(PR // CA\) thì \(( PRQ) ∩ (ACD) = QS // CA // PR ( S ∈ AD)\).

b) Nếu \(PR ∩ AC = I\) thì trong \((ACD)\) kéo dài \(IQ\) cắt \(AD\) tại \(S\).

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

Các bài liên quan: - Bài 2. Hai đường thẳng chéo nhau và hai đường thẳng song song

>>Học trực tuyến các môn lớp 11, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu