Bài 2 trang 141 (Hàm số liên tục) SGK Đại số và Giải tích 11


Giải Bài 2 trang 141 (Hàm số liên tục) SGK Đại số và Giải tích 11. Xét tính liên tục của hàm số

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

LG a

Xét tính liên tục của hàm số \(y = g(x)\) tại \(x_0= 2\), biết 

\[g(x) = \left\{\begin{matrix} \dfrac{x^{3}-8}{x- 2}; &x\neq 2 \\ 5;& x=2 \end{matrix}\right.\]

Phương pháp giải:

Hàm số \(y=f(x)\) có tập xác định \(D\) liên tục tại \({x_0 \in D}\)

\( \Leftrightarrow \mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\).

Lời giải chi tiết:

Ta có:

\(\begin{array}{l}
\mathop {\lim }\limits_{x \to 2} g\left( x \right) = \mathop {\lim }\limits_{x \to 2} \dfrac{{{x^3} - 8}}{{x - 2}}\\= \mathop {\lim }\limits_{x \to 2} \dfrac{{(x-2)(x^2+2x+4)}}{{x - 2}}\\ = \mathop {\lim }\limits_{x \to 2} \left( {{x^2} + 2x + 4} \right)\\
= {2^2} + 2.2. + 4 = 12\\
g\left( 2 \right) = 5\\
\Rightarrow \mathop {\lim }\limits_{x \to 2} g\left( x \right) \ne g\left( 2 \right)
\end{array}\)

Vì \(\underset{x\rightarrow 2}{\lim} g(x) ≠ g(2)\) nên hàm số \(y = g(x)\) gián đoạn tại \(x_0= 2\).

LG b

Trong biểu thức xác định \(g(x)\) ở trên, cần thay số \(5\) bởi số nào để hàm số liên tục tại \(x_0= 2\).

Lời giải chi tiết:

Để hàm số \(y = g(x)\) liên tục tại \(x_0= 2\) \( \Rightarrow \mathop {\lim }\limits_{x \to 2} g\left( x \right) = g\left( 2 \right) = 12 \Rightarrow \) ta cần thay số \(5\) bởi số \(12\).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.2 trên 49 phiếu

Các bài liên quan: - Bài 3. Hàm số liên tục

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

>>KHOÁ NỀN TẢNG LỚP 12 DÀNH CHO 2K4 NĂM 2022 học sớm chiếm lợi thế luyện thi TN THPT & ĐH


Gửi bài