Bài 2.5 trang 82 SBT hình học 10


Giải bài 2.5 trang 82 sách bài tập hình học 10. Hãy tính và so sánh giá trị của từng cặp biểu thức sau đây:...

Lựa chọn câu để xem lời giải nhanh hơn

Hãy tính và so sánh giá trị của từng cặp biểu thức sau đây:

LG a

\(A = {\cos ^2}{30^0} - {\sin ^2}{30^0}\) và \(B = \cos {60^0} + \sin {45^0}\);

Phương pháp giải:

Sử dụng giá trị lượng giác của các góc đặc biệt từ \({0^0}\) đến \({180^0}\).

Xem chi tiết.

Giải chi tiết:

 Ta có: \(A = {\cos ^2}{30^0} - {\sin ^2}{30^0}\)\( = {\left( {\dfrac{{\sqrt 3 }}{2}} \right)^2} - {\left( {\dfrac{1}{2}} \right)^2}\) \( = \dfrac{3}{4} - \dfrac{1}{4} = \dfrac{1}{2}\)

\(B = \cos {60^0} + \sin {45^0}\)\( = \dfrac{1}{2} + \dfrac{{\sqrt 2 }}{2} = \dfrac{{1 + \sqrt 2 }}{2}\)

Vì \(\dfrac{{1 + \sqrt 2 }}{2} > \dfrac{1}{2}\) nên \(B > A\).

LG b

\(C = \dfrac{{2\tan {{30}^0}}}{{1 - {{\tan }^2}{{30}^0}}}\) và \(D = ( - \tan {135^0}).tan{60^0}\).

Phương pháp giải:

Sử dụng giá trị lượng giác của các góc đặc biệt từ \({0^0}\) đến \({180^0}\).

Xem chi tiết.

Giải chi tiết:

\(C = \dfrac{{2\tan {{30}^0}}}{{1 - {{\tan }^2}{{30}^0}}}\)\( = \dfrac{{2.\dfrac{1}{{\sqrt 3 }}}}{{1 - {{\left( {\dfrac{1}{{\sqrt 3 }}} \right)}^2}}} = \dfrac{{\dfrac{2}{{\sqrt 3 }}}}{{1 - \dfrac{1}{3}}}\) \( = \dfrac{2}{{\sqrt 3 }}:\dfrac{2}{3} = \dfrac{2}{{\sqrt 3 }}.\dfrac{3}{2} = \sqrt 3 \)

\(D = ( - \tan {135^0}).tan{60^0}\)\( = \tan {45^0}.\tan {60^0} = 1.\sqrt 3  = \sqrt 3 \)

Vậy \(C = D\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến Lớp 10 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài