Bài 2.12 trang 82 SBT hình học 10


Giải bài 2.12 trang 82 sách bài tập hình học 10. Chứng minh rằng biểu thức sau đây không phụ thuộc vào...

Lựa chọn câu để xem lời giải nhanh hơn

Chứng minh rẳng biểu thức sau đây không phụ thuộc vào \(\alpha \)

LG a

\(A = {(\sin \alpha  + \cos \alpha )^2} + {(\sin \alpha  - \cos \alpha )^2}\);

Phương pháp giải:

Sử dụng hệ thức \(\sin ^2x+\cos^2x=1\) biến đổi biểu thức đã cho và suy ra kết luận.

Giải chi tiết:

\(A = {(\sin \alpha  + \cos \alpha )^2} + {(\sin \alpha  - \cos \alpha )^2}\)

\( = 1 + 2\sin \alpha \cos \alpha  + 1 - 2\sin \alpha \cos \alpha \)

\( = 2\)

LG b

\(B = {\sin ^4}\alpha  - {\cos ^4}\alpha  - 2{\sin ^2}\alpha  + 1\)

Phương pháp giải:

Sử dụng hệ thức \(\sin ^2x+\cos^2x=1\) biến đổi biểu thức đã cho và suy ra kết luận.

Giải chi tiết:

\(B = {\sin ^4}\alpha  - {\cos ^4}\alpha  - 2{\sin ^2}\alpha  + 1\)

\( = ({\sin ^2}\alpha  + {\cos ^2}\alpha )({\sin ^2}\alpha  - {\cos ^2}\alpha )\)\( - 2{\sin ^2}\alpha  + 1\)

\( = 1.\left[ {{{\sin }^2}\alpha  - \left( {1 - {{\sin }^2}\alpha } \right)} \right] - 2{\sin ^2}\alpha  + 1\)

\( = {\sin ^2}\alpha  - 1 + {\sin ^2}\alpha  - 2{\sin ^2}\alpha  + 1\) \( = 0\).

 

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến Lớp 10 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài