Bài 1.12 trang 9 SBT đại số 10


Giải bài 1.12 trang 9 sách bài tập đại số 10. Lập mệnh đề phủ định của mỗi mệnh đề sau và xét tính đúng sai của nó....

Lựa chọn câu để xem lời giải nhanh hơn

Lập mệnh đề phủ định của mỗi mệnh đề sau và xét tính đúng sai của nó.

LG a

\(\forall x \in R:x.1 = x;\)

Phương pháp giải:

Phủ định \(\overline P \) của mệnh đề \(P\) là đúng khi \(P\) sai và là sai khi \(P\) đúng.

Mệnh đề phủ định của mệnh đề \(\forall x \in X,P\left( x \right)\) là \(\exists x \in X,\overline {P\left( x \right)} \)

Lời giải chi tiết:

\(\exists x \in R:x.1 \ne x\). Mệnh đề này sai.

Vì với mọi x thì x.1=x.

LG b

\(\forall x \in R:x.x = 1;\)

Phương pháp giải:

Phủ định \(\overline P \) của mệnh đề \(P\) là đúng khi \(P\) sai và là sai khi \(P\) đúng.

Mệnh đề phủ định của mệnh đề \(\forall x \in X,P\left( x \right)\) là \(\exists x \in X,\overline {P\left( x \right)} \)

Lời giải chi tiết:

\(\exists x \in R:x.x \ne 1\). Mệnh đề đúng.

Chẳng hạn x=2 thì 2.2=4\(\ne\)1.

LG c

 \(\forall n \in Z:n \le {n^2}\)

Phương pháp giải:

Phủ định \(\overline P \) của mệnh đề \(P\) là đúng khi \(P\) sai và là sai khi \(P\) đúng.

Mệnh đề phủ định của mệnh đề \(\forall x \in X,P\left( x \right)\) là \(\exists x \in X,\overline {P\left( x \right)} \)

Lời giải chi tiết:

\(\exists n \in Z:n > {n^2}\). 

Nhận xét: \(n > {n^2} \leftrightarrow n^2-n < 0 \leftrightarrow n(n-1) < 0 \leftrightarrow 0< n< 1\) 

Mà \(n \) thuộc Z nên không tồn tại \( n\) sao cho \( 0< n< 1\) 

Vậy mệnh đề \(\overline P \) sai.

 Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 1: Mệnh đề

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.