Câu hỏi 5 trang 10 SGK Hình học 11


Giải câu hỏi 5 trang 10 SGK Hình học 11. Chọn hệ tọa độ Oxy sao cho trục Ox trùng với trục đối xứng...

Đề bài

Chọn hệ tọa độ Oxy sao cho trục Ox trùng với trục đối xứng, rồi dùng biểu thức tọa độ của phép đối xứng qua trục Ox để chứng minh tính chất 1.

Video hướng dẫn giải

Lời giải chi tiết

Gọi \(A\left( {{x_A};{y_A}} \right),B\left( {{x_B};{y_B}} \right)\)

Xét phép đối xứng qua trục Ox thì A, B biến thành \(A'\left( {{x_A}; - {y_A}} \right),B'\left( {{x_B}; - {y_B}} \right)\)

Khi đó:

\(\begin{array}{l}
AB = \sqrt {{{\left( {{x_B} - {x_A}} \right)}^2} + {{\left( {{y_B} - {y_A}} \right)}^2}} \\
A'B' = \sqrt {{{\left( {{x_B} - {x_A}} \right)}^2} + {{\left( { - {y_B} + {y_A}} \right)}^2}} \\
= \sqrt {{{\left( {{x_B} - {x_A}} \right)}^2} + {{\left( {{y_B} - {y_A}} \right)}^2}} \\
= AB\\
\Rightarrow A'B' = AB \Rightarrow dpcm
\end{array}\)

Chú ý:

Trực quan các em có thể lấy hai điểm A, B cụ thể như sau:

Lấy ảnh A',B' của hai điểm A(1; 2) và B(2; 3) qua phép đối xứng trục Ox

Dùng biểu thức tọa độ của phép đối xứng qua trục Ox, ta có:

A'(1;-2), B'(2;-3)

\(\eqalign{
& AB = \sqrt {{{(2 - 1)}^2} + {{(3 - 2)}^2}} \cr &= \sqrt {{1^2} + {1^2}} = \sqrt 2 \cr
& A'B' = \sqrt {{{(2 - 1)}^2} + {{( - 3 - ( - 2))}^2}} \cr &= \sqrt {{1^2} + {{( - 1)}^2}} = \sqrt 2 \cr} \)

⇒ A'B' = AB

 Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 3. Phép đối xứng trục

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

>>Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài