Câu 8 trang 210 sách bài tập Giải tích 12 Nâng cao


Tìm tập xác định của các hàm số sau:

Lựa chọn câu để xem lời giải nhanh hơn

Tìm tập xác định của các hàm số sau:

LG a

\(y = {1 \over {{5^x} - 25}}\)

Giải chi tiết:

\(x \ne 2\)

LG b

\(y = \log \left( {\sin x + \cos x} \right)\)

Giải chi tiết:

\( - {\pi  \over 4} + k2\pi  < x < {{3\pi } \over 4} + k2\pi \left( {k \in Z} \right)\)

Hướng dẫn: ĐKXĐ: \(\sin x + \cos x > 0\), hay \(\sqrt 2 \sin \left( {x + {\pi  \over 4}} \right) > 0\)

LG c

\(y = \sqrt {{{\log }_{{1 \over 2}}}\left( {{{\log }_7}{{{x^2} - 3} \over {x + 1}}} \right)} \)

Giải chi tiết:

\({{1 - \sqrt {17} } \over 2} < x \le {{7 - \sqrt {89} } \over 2}\) hoặc \({{1 + \sqrt {17} } \over 2} < x \le {{7 + \sqrt {89} } \over 2}\)

Hướng dẫn : Hàm số \(y = \sqrt {{{\log }_{{1 \over 2}}}\left( {{{\log }_7}{{{x^2} - 3} \over {x + 1}}} \right)} \)xác định khi

 \({\log _{{1 \over 2}}}\left( {{{\log }_7}{{{x^2} - 3} \over {x + 1}}} \right) \ge 0\)               (1)

Ta có                                                  

(1) \( \Leftrightarrow 0 < {\log _7}{{{x^2} - 3} \over {x + 1}} \le 1 \Leftrightarrow 1 < {{{x^2} - 3} \over {x + 1}} \le 7 \Leftrightarrow \left\{ \matrix{{{{x^2} - 7x - 10} \over {x + 1}} \le 0 \hfill \cr{{{x^2} - x - 4} \over {x + 1}} > 0 \hfill \cr}  \right.\)   

\(\left\{ \matrix{x \le {{7 - \sqrt {89} } \over 2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,hoac\,\,\, - 1 < x \le {{7 + \sqrt {89} } \over 2} \hfill \cr{{1 - \sqrt {17} } \over 2} < x <  - 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,hoac\,\,\,\,\,\,\,x > {{1 + \sqrt {17} } \over 2} \hfill \cr}  \right.\)      

\( \Leftrightarrow {{1 - \sqrt {17} } \over 2} < x \le {{7 - \sqrt {89} } \over 2}\)  hoặc   \({{1 + \sqrt {17} } \over 2} < x \le {{7 + \sqrt {89} } \over 2}\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Ôn tập cuối năm Giải tích

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài