Câu 22 trang 211 sách bài tập Giải tích 12 Nâng cao>
Tìm số phức z sao cho
Đề bài
Tìm số phức z sao cho \(\left| {{{z + 3i} \over {z + i}}} \right| = 1\) và \(z + 1\) có một acgumen bằng \( - {\pi \over 6}\)
Lời giải chi tiết
Điều kiện \(\left| {{{z + 3i} \over {z + i}}} \right| = 1\) nói rằng phần ảo của z bằng -2. Điều kiện \(z + 1\) có một acgumen bằng \( - {\pi \over 6}\)nói rằng \(z + 1 = l\left( {\sqrt 3 - i} \right)\) với \(l > 0\).
Vậy \(z + 1 = 2\left( {\sqrt 3 + i} \right),\) tức là \(z = 2\sqrt 3 - 1 - 2i.\)
Loigiaihay.com
- Câu 23 trang 211 sách bài tập Giải tích 12 Nâng cao
- Câu 21 trang 211 sách bài tập Giải tích 12 Nâng cao
- Câu 20 trang 211 sách bài tập Giải tích 12 Nâng cao
- Câu 19 trang 211 sách bài tập Giải tích 12 Nâng cao
- Câu 18 trang 211 sách bài tập Giải tích 12 Nâng cao
>> Xem thêm
- Bài 1.1 trang 10 SBT Giải tích 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 trang 16 SBT Hình học 12 Nâng cao
- Bài 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 trang 67 SBT Hình học 12 Nâng cao
- Câu 4.25 trang 181 sách bài tập Giải tích 12 Nâng cao
- Câu 23 trang 211 sách bài tập Giải tích 12 Nâng cao