Câu 11 trang 211 sách bài tập Giải tích 12 Nâng cao


Giải các hệ phương trình sau:

Lựa chọn câu để xem lời giải nhanh hơn

Giải các hệ phương trình sau:

LG a

\(\left\{ \matrix{5{\log _2}x - {\log _4}{y^2} = 8 \hfill \cr5{\log _2}{x^2} - {\log _4}y = 19 \hfill \cr}  \right.\)

Lời giải chi tiết:

\(\left( {x;y} \right) = \left( {4;4} \right)\)                         

Đặt \({\log _2}x = u\) và \({\log _4}y = v\), ta có hệ:

            \(\left\{ \matrix{5u - 2v = 8 \hfill \cr10u - v = 19 \hfill \cr}  \right.\)

LG b

\(\left\{ \matrix{ {2^x}{.4^y} = 64 \hfill \cr \sqrt x  + \sqrt y  = 3 \hfill \cr}  \right.\)

Lời giải chi tiết:

Lôgarit hóa hai vế của phương trình thứ nhất để đưa về dạng

            \(\left\{ \matrix{x + 2y = 6 \hfill \cr \sqrt x  + \sqrt y  = 3 \hfill \cr}  \right.\)

Rồi đặt \(\sqrt x  = u,\sqrt y  = v\left( {u \ge 0,v \ge 0} \right)\) dẫn đến hệ:

            \(\left\{ \matrix{{u^2} + 2{v^2} - 6 = 0 \hfill \cr u + v = 3 \hfill \cr}  \right.\)

Tìm được \(u = 2;v = 1\)

Suy ra \(\left( {x;y} \right) = \left( {4;1} \right)\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Ôn tập cuối năm Giải tích

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài