Giải toán 11, giải bài tập toán lớp 11 đầy đủ đại số và giải tích, hình học
ÔN TẬP CUỐI NĂM HÌNH HỌC - TOÁN 11
Bài 6 trang 126 SGK Hình học 11>
a) Hãy xác định đường vuông góc chung của hai đường thẳng chéo nhau BD' và B'C.
Đề bài
Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a\).
a) Hãy xác định đường vuông góc chung của hai đường thẳng chéo nhau \(BD'\) và \(B'C\).
b)Tính khoảng cách của hai đường thẳng \(BD'\) và \(B'C\)
Video hướng dẫn giải
Lời giải chi tiết

a) \(AB ⊥ (BCC’B’) ⇒ AB ⊥ B’C\)
\(BCC’B’\) là hình vuông có \(BC’ ⊥ B’C\)
\(⇒ B’C ⊥ (ABC’D’)\)
Trong mặt phẳng \((ABC’D’)\), kẻ \(IK ⊥ BD’\).
Vì \(B’C ⊥ (ABC’D’) ⇒ B’C ⊥ IK\)
Kết hợp với \(IK ⊥ BD’ \) \( ⇒ IK\) là đường vuông góc chung của \(B’C\) và \(BD’\)
b) Ta có: \(d\left( {B'C,BD'} \right) = IK\)
\(C'B = \sqrt {C{B^2} + B'{B^2}} \) \(= \sqrt {{a^2} + {a^2}} = a\sqrt 2 \)
\(D'B = \sqrt {C'{B^2} + C'D{'^2}} \) \( = \sqrt {2{a^2} + {a^2}} = a\sqrt 3 \)

Xét \(∆BIK\) và \(∆BD’C’\) có:
B chung
\(\widehat {BC'D'} = \widehat {BKI} = {90^0}\)
Suy ra \(∆BIK \backsim ∆BD’C’\) (g-g)
\(\eqalign{
& \Rightarrow {{IK} \over {D'C'}} = {{BI} \over {B{\rm{D}}'}} \cr
& \Rightarrow IK = {{BI.D'C'} \over {B{\rm{D}}'}} \cr} \).
Mà \(BI = \dfrac{1}{2}BC' = \dfrac{{a\sqrt 2 }}{2}\) nên:
\(IK = \dfrac{{\frac{{a\sqrt 2 }}{2}.a}}{{a\sqrt 3 }} = \dfrac{{a\sqrt 6 }}{6}\)
Vậy \(d\left( {B'C,BD'} \right) = \dfrac{{a\sqrt 6 }}{6} \)
loigiaihay.com




