Bài 6 trang 126 SGK Hình học 11>
a) Hãy xác định đường vuông góc chung của hai đường thẳng chéo nhau BD' và B'C.
Đề bài
Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a\).
a) Hãy xác định đường vuông góc chung của hai đường thẳng chéo nhau \(BD'\) và \(B'C\).
b)Tính khoảng cách của hai đường thẳng \(BD'\) và \(B'C\)
Video hướng dẫn giải
Lời giải chi tiết
a) \(AB ⊥ (BCC’B’) ⇒ AB ⊥ B’C\)
\(BCC’B’\) là hình vuông có \(BC’ ⊥ B’C\)
\(⇒ B’C ⊥ (ABC’D’)\)
Trong mặt phẳng \((ABC’D’)\), kẻ \(IK ⊥ BD’\).
Vì \(B’C ⊥ (ABC’D’) ⇒ B’C ⊥ IK\)
Kết hợp với \(IK ⊥ BD’ \) \( ⇒ IK\) là đường vuông góc chung của \(B’C\) và \(BD’\)
b) Ta có: \(d\left( {B'C,BD'} \right) = IK\)
\(C'B = \sqrt {C{B^2} + B'{B^2}} \) \(= \sqrt {{a^2} + {a^2}} = a\sqrt 2 \)
\(D'B = \sqrt {C'{B^2} + C'D{'^2}} \) \( = \sqrt {2{a^2} + {a^2}} = a\sqrt 3 \)
Xét \(∆BIK\) và \(∆BD’C’\) có:
B chung
\(\widehat {BC'D'} = \widehat {BKI} = {90^0}\)
Suy ra \(∆BIK \backsim ∆BD’C’\) (g-g)
\(\eqalign{
& \Rightarrow {{IK} \over {D'C'}} = {{BI} \over {B{\rm{D}}'}} \cr
& \Rightarrow IK = {{BI.D'C'} \over {B{\rm{D}}'}} \cr} \).
Mà \(BI = \dfrac{1}{2}BC' = \dfrac{{a\sqrt 2 }}{2}\) nên:
\(IK = \dfrac{{\frac{{a\sqrt 2 }}{2}.a}}{{a\sqrt 3 }} = \dfrac{{a\sqrt 6 }}{6}\)
Vậy \(d\left( {B'C,BD'} \right) = \dfrac{{a\sqrt 6 }}{6} \)
loigiaihay.com
- Bài 7 trang 126 SGK Hình học 11
- Bài 5 trang 126 SGK Hình học 11
- Bài 4 trang 126 SGK Hình học 11
- Bài 3 trang 126 SGK Hình học 11
- Bài 2 trang 125 SGK Hình học 11
>> Xem thêm