
Đề bài
Cho hình lập phương \(ABCD.A'B'C'D'\) có \(E\) và \(F\) lần lượt là trung điểm của các cạnh \(AB\) và \(DD'\). Hãy xác định các thiết diện của hình lập phương cắt bởi các mặt phẳng \((EFB)\), \((EFC)\), \((EFC')\) và \((EFK)\) với \(K\) là trung điểm của cạnh \(B'C'\).
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Xác định giao tuyến của các mặt phẳng đã cho với tất cả các mặt của hình lập phương.
Lời giải chi tiết
- Mặt phẳng \((EFB)\) chính là mặt phẳng \((ABF)\), mặt phẳng này chứa cạnh \(AB//CD\) nên \((EFB) ∩ (DCC'D')=GF // AB \,\,\, (G \in CC')\)
Ta có thiết diện là hình bình hành \(ABGF\) như hình dưới đây.
Tuy nhiên ta lại có \(AB \bot \left( {ADD'A'} \right) \Rightarrow AB \bot AF \Rightarrow ABGF\) là hình chữ nhật.
- Trong mặt phẳng \((ABCD), CE ∩ DA\) tại \(J\). Trong mặt phẳng \((ADD’A’)\) có \(JF ∩ AA’\) tại \(I\).
Thiết diện cần dựng là hình thang \(CFIE\) (\(IE // FC\)) như hình dưới đây:
- Trong mặt phẳng \((DCC’D’)\), \(C’F ∩ CD\) tại \(M\). Trong mặt phẳng \((ABCD)\), \(EM ∩ AD\) tại \(N\), \(FN\) là giao tuyến của mặt phẳng \((C’EF)\) với mặt bên \((ADD’A’)\).
Trong mặt phẳng \((ABCD)\), \(ME ∩ BC\) tại \(Q\). Trong mặt phẳng \((BCC’B’)\), \(C’Q ∩ BB’\) tại \(P\).
Thiết diện cần dựng là hình ngũ giác \(C’PENF\) như hình dưới đây:
- Gọi \(E, H, F, I, K, J\) theo thứ tự là trung điểm của \(AB, AD, DD’, D’C’, C’B’, BB’\). Ta dễ dàng chứng minh được 6 điểm \(E, H, F, I, K, J\) nằm trên cùng một mặt phẳng. Mặt phẳng này chính là mặt phẳng \((EFK)\) và thiết diện có được là hình lục giác \(EHFIKJ\). Lục giác này có ba cặp cạnh đối song song và bằng nhau nên nó là lục giác đều. Hình dưới đây:
Loigiaihay.com
Giải bài 6 trang 126 SGK Hình học 11. a) Hãy xác định đường vuông góc chung của hai đường thẳng chéo nhau BD' và B'C.
Giải bài 7 trang 126 SGK Hình học 11. Cho hình thang ABCD vuông tại A và B, có AD = 2a, AB = BC = a. Trên tia Ax vuông góc với mặt phẳng (ABCD) lấy một điểm S.
Giải bài 4 trang 126 SGK Hình học 11. Cho hình lăng trụ tứ giác ABCD.A’B’C’D’ có E, F, M và N lần lượt là trung điểm của AC, BD, AC’ và BD’. Chứng minh MN = EF.
Giải bài 3 trang 126 SGK Hình học 11. Cho hình chóp S.ABCD có đáy ABCD là hình thang với AB là đáy lớn.
a) Tìm phép vị tự F biến A, B, C tương ứng thành A', B',C'
Giải bài 1 trang 125 SGK Hình học 11. Trong mặt phẳng tọa độ Oxy, cho các điểm A (1; 1), B(0; 3), C(2; 4) .Xác định ảnh của tam giác ABC qua các phép biến hình sau.
>> Xem thêm
Cảm ơn bạn đã sử dụng Loigiaihay.com. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?
Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!
Họ và tên:
Email / SĐT: