Bài 4 trang 126 SGK Hình học 11

Bình chọn:
3.6 trên 5 phiếu

Giải bài 4 trang 126 SGK Hình học 11. Cho hình lăng trụ tứ giác ABCD.A’B’C’D’ có E, F, M và N lần lượt là trung điểm của AC, BD, AC’ và BD’. Chứng minh MN = EF.

Đề bài

Cho hình lăng trụ tứ giác \(ABCD.A’B’C’D’\) có \(E, F, M\) và \(N\) lần lượt là trung điểm của \(AC, BD, AC’\) và \(BD’\). Chứng minh \(MN = EF\).

Phương pháp giải - Xem chi tiết

Chứng minh \(MNFE\) là hình bình hành.

Lời giải chi tiết

Vì \(M\) là trung điểm của \(A’C\) và \(E\) là trung điểm của \(AC\) nên \(ME\) là đường trung bình của \(\Delta ACC' \Rightarrow \overrightarrow {EM}  = {1 \over 2}\overrightarrow {CC'}\,\,\,\,\, (1)\)

Tương tự ta có \(FN\) là đường trung bình của tam giác \(BDB'\): \(\Rightarrow \overrightarrow {FN}  = {1 \over 2}\overrightarrow {BB'} \,\,\,\,\,(2)\)

Ta lại có: \(\overrightarrow {AA'}  = \overrightarrow {BB'}\,\,\,\,\,\, (3)\)

Từ (1), (2), (3) ⇒ \(\overrightarrow {EM}  = \overrightarrow {FN}\) hay tứ giác \(MNFE\) là hình bình hành, do đó \(MN = EF\).

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 11 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến các môn lớp 11, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu



Các bài liên quan