Các dạng toán về mặt cầu và mặt phẳng


Các dạng toán về mặt cầu và mặt phẳng

1. Kiến thức cần nhớ

Cho mặt phẳng \(\left( P \right)\) và mặt cầu \(\left( S \right)\) tâm \(I\) bán kính \(R\). Khi đó:

- \(\left( S \right) \cap \left( P \right) = \emptyset  \Leftrightarrow d\left( {I,\left( P \right)} \right) > R.\)

- \(\left( S \right) \cap \left( P \right) = \left\{ H \right\} \Leftrightarrow d\left( {I,\left( P \right)} \right) = R.\)

ở đó, \(H\) là tiếp điểm, \(\left( P \right)\) là tiếp diện và \(OH \bot \left( P \right)\) tại \(H.\)

- \(\left( S \right) \cap \left( P \right) = C\left( {H;r} \right) \Leftrightarrow d\left( {I,\left( P \right)} \right) < R.\)

ở đó : với \(H\) là hình chiếu của \(I\) trên \(\left( P \right)\).

Đặc biệt: \(d\left( {I,\left( P \right)} \right) = 0\) hay \(\left( P \right)\) đi qua \(I\) thì \(\left( S \right) \cap \left( P \right) = C\left( {I;R} \right).\)

\(C\left( {I;R} \right)\) được gọi là đường tròn lớn, \(\left( P \right)\) là mặt phẳng kính. 

2. Một số dạng toán thường gặp

Dạng 1: Viết phương trình mặt cầu tiếp xúc hoặc cắt mặt phẳng cho trước.

Phương pháp:

- Bước 1: Tính bán kính mặt cầu dựa vào các điều kiện bài cho:

+ Tiếp xúc mặt phẳng nếu \(d\left( {I,\left( P \right)} \right) = R\)

+ Cắt mặt phẳng theo giao tuyến và đường tròn bán kính \(r\) thì \(R^2 = {r^2} + {d^2}\left( {I,\left( P \right)} \right)\)

- Bước 2: Viết phương trình mặt cầu biết tâm và bán kính.

Dạng 2: Viết phương trình mặt phẳng \((P)\) tiếp xúc, giao với mặt cầu cho trước.

Phương pháp:

- Bước 1: Tìm VTPT của mặt phẳng \((P)\) dựa vào điều kiện bài cho.

+ Tiếp xúc mặt cầu tại điểm \(H\) thì \(\overrightarrow {{n_P}}  = \overrightarrow {IH} \)

+ Trường hợp \((P)\) song song với mặt phẳng \((Q):ax+by+cz+d=0\) (\(a,b,c,d\) là các số cho trước) và cắt mặt cầu theo đường tròn có bán kính \(r\) thì \(\overrightarrow {{n_P}}  = \overrightarrow {{n_Q}} \) tức là \((P):ax+by+cz+d'=0\).

và \(d\left( {I,\left( P \right)} \right) = \sqrt {{R^2} - {r^2}} \).

- Bước 2: Viết phương trình mặt phẳng.

+ Tiếp xúc mặt cầu tại điểm \(H\): Xác định điểm \(H\) rồi lập phương trình mặt phẳng.

+ Trường hợp \((P)\) song song với mặt phẳng \((Q):ax+by+cz+d=0\) (\(a,b,c,d\) là các số cho trước) và cắt mặt cầu theo đường tròn có bán kính \(r\):

Sử dụng \(d\left( {I,\left( P \right)} \right) = \sqrt {{R^2} - {r^2}} \) để tìm d'.


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí