Các dạng toán về mặt cầu và mặt phẳng>
Các dạng toán về mặt cầu và mặt phẳng
1. Kiến thức cần nhớ
Cho mặt phẳng \(\left( P \right)\) và mặt cầu \(\left( S \right)\) tâm \(I\) bán kính \(R\). Khi đó:
- \(\left( S \right) \cap \left( P \right) = \emptyset \Leftrightarrow d\left( {I,\left( P \right)} \right) > R.\)
- \(\left( S \right) \cap \left( P \right) = \left\{ H \right\} \Leftrightarrow d\left( {I,\left( P \right)} \right) = R.\)
ở đó, \(H\) là tiếp điểm, \(\left( P \right)\) là tiếp diện và \(OH \bot \left( P \right)\) tại \(H.\)
- \(\left( S \right) \cap \left( P \right) = C\left( {H;r} \right) \Leftrightarrow d\left( {I,\left( P \right)} \right) < R.\)
ở đó : với \(H\) là hình chiếu của \(I\) trên \(\left( P \right)\).
Đặc biệt: \(d\left( {I,\left( P \right)} \right) = 0\) hay \(\left( P \right)\) đi qua \(I\) thì \(\left( S \right) \cap \left( P \right) = C\left( {I;R} \right).\)
\(C\left( {I;R} \right)\) được gọi là đường tròn lớn, \(\left( P \right)\) là mặt phẳng kính.
2. Một số dạng toán thường gặp
Dạng 1: Viết phương trình mặt cầu tiếp xúc hoặc cắt mặt phẳng cho trước.
Phương pháp:
- Bước 1: Tính bán kính mặt cầu dựa vào các điều kiện bài cho:
+ Tiếp xúc mặt phẳng nếu \(d\left( {I,\left( P \right)} \right) = R\)
+ Cắt mặt phẳng theo giao tuyến và đường tròn bán kính \(r\) thì \(R^2 = {r^2} + {d^2}\left( {I,\left( P \right)} \right)\)
- Bước 2: Viết phương trình mặt cầu biết tâm và bán kính.
Dạng 2: Viết phương trình mặt phẳng \((P)\) tiếp xúc, giao với mặt cầu cho trước.
Phương pháp:
- Bước 1: Tìm VTPT của mặt phẳng \((P)\) dựa vào điều kiện bài cho.
+ Tiếp xúc mặt cầu tại điểm \(H\) thì \(\overrightarrow {{n_P}} = \overrightarrow {IH} \)
+ Trường hợp \((P)\) song song với mặt phẳng \((Q):ax+by+cz+d=0\) (\(a,b,c,d\) là các số cho trước) và cắt mặt cầu theo đường tròn có bán kính \(r\) thì \(\overrightarrow {{n_P}} = \overrightarrow {{n_Q}} \) tức là \((P):ax+by+cz+d'=0\).
và \(d\left( {I,\left( P \right)} \right) = \sqrt {{R^2} - {r^2}} \).
- Bước 2: Viết phương trình mặt phẳng.
+ Tiếp xúc mặt cầu tại điểm \(H\): Xác định điểm \(H\) rồi lập phương trình mặt phẳng.
+ Trường hợp \((P)\) song song với mặt phẳng \((Q):ax+by+cz+d=0\) (\(a,b,c,d\) là các số cho trước) và cắt mặt cầu theo đường tròn có bán kính \(r\):
Sử dụng \(d\left( {I,\left( P \right)} \right) = \sqrt {{R^2} - {r^2}} \) để tìm d'.
- Các dạng toán về mặt cầu và đường thẳng
- Phương trình mặt cầu trong không gian
- Các dạng toán về đường thẳng và mặt phẳng
- Bài 15 trang 97 SGK Hình học 12
- Bài 14 trang 97 SGK Hình học 12
>> Xem thêm