Bài 6 trang 95 SGK Hình học 12

Bình chọn:
3.5 trên 6 phiếu

Giải bài 6 trang 95 SGK Hình học 12. Mặt cầu ngoại tiếp tứ diện ABCD có bán kính là:

Đề bài

Trong không gian \(Oxyz\) cho bốn điểm \(A(1; 0; 0), B(0; 1; 0), C(0; 0; 1)\) và \(D(1; 1; 1)\)

Mặt cầu ngoại tiếp tứ diện \(ABCD\) có bán kính là:

(A) \({{\sqrt 3 } \over 2}\) ;                          (B) \(\sqrt2\) ;

(C) \(\sqrt3\);                          (D) \({3 \over 4}\) .

Phương pháp giải - Xem chi tiết

Gọi phương trình tổng quát của mặt cầu ngoại tiếp tứ diện ABCD là:

\({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\)

Thay tọa độ các điểm A, B, C, D vào phương trình mặt cầu tìm các hệ số a, b, c, d.

Suy ra bán kính của mặt cầu: \(R = \sqrt {{a^2} + {b^2} + {c^2} - d} \)

Lời giải chi tiết

Phương trình tổng quát của mặt cầu ngoại tiếp tứ diện ABCD là:

\({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\)

Mặt cầu đi qua \(A,B,C,D\) nên ta có hệ:

\(\left\{ \matrix{
1 - 2a + d = 0 \,\,\,\, (1) \hfill \cr
1 - 2b + d = 0 \,\,\,\,  (2) \hfill \cr
1 - 2c + d = 0 \,\,\,\,  (3) \hfill \cr
3 - 2a - 2b - 2c + d = 0 \,\,\,\,  (4) \hfill \cr} \right.\)

Lấy \((1)+(2)+(3)-(4)\) ta được: \(d = 0\)

Từ đây ta được: \(a = {1 \over 2},b = {1 \over 2},c = {1 \over 2}\)

\({R} = \sqrt {{a^2} + {b^2} + {c^2} - d}  = {{\sqrt 3 } \over 2}\)

Chọn (A).

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2020, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới nâng cao.