Bài 7 trang 95 SGK Hình học 12


Giải bài 7 trang 95 SGK Hình học 12. Phương trình của mặt phẳng (α) là:

Đề bài

Cho mặt phẳng \((α)\) đi qua điểm \(M(0 ; 0 ; -1)\) và song song với giá của hai vectơ \(\overrightarrow a  = \left( {1; - 2;3} \right)\) và \(\overrightarrow b = (3 ; 0 ; 5)\).

Phương trình của mặt phẳng \((α)\) là:

(A) \(5x - 2y - 3z - 21 = 0\) ;

(B) \( - 5x + 2y + 3z + 3 = 0\) ;

(C) \(10x - 4y - 6z + 21 = 0\) ;        

(D) \(5x - 2y - 3z + 21 = 0\) .

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Gọi \(\vec n\) là véc tơ pháp tuyến của mặt phẳng \((\alpha)\) thì \(\overrightarrow n  = \left[ {\overrightarrow a ;\overrightarrow b } \right]\).

Lời giải chi tiết

Gọi \(\vec n\) là véc tơ pháp tuyến của mặt phẳng \((\alpha)\) thì 

\(\overrightarrow n  = \left[ {\overrightarrow a ;\overrightarrow b } \right] = ( - 10;4;6)\).

Phương trình của mặt phẳng \((\alpha)\) là:

\(- 10(x - 0) + 4(y - 0) + 6(z + 1) = 0\) 

\(\Leftrightarrow- 10x + 4y + 6z + 6 = 0 \)

\(\Leftrightarrow - 5x + 2y + 3z + 3 = 0\) 

Chọn (B)

Loigiaihay.com


Bình chọn:
3.4 trên 5 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài