Bài 4 trang 92 SGK Hình học 12


Giải bài 4 trang 92 SGK Hình học 12. Trong hệ toạ độ Oxyz, lập phương trình tham số của đường thẳng:

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Lập phương trình tham số của đường thẳng:

LG a

Đi qua hai điểm \(A(1 ; 0 ; -3), B(3 ; -1 ; 0)\).

Phương pháp giải:

Phương trình tham số đường thẳng \((d)\) đi qua \(M\left( {{x_0};{y_0};{z_0}} \right)\) và nhận \(\overrightarrow u  = \left( {a;b;c} \right)\) là 1 VTCP có dạng: \(\left\{ \begin{array}{l}x = {x_0} + at\\y = {y_0} + bt\\z = {z_0} + ct\end{array} \right.\,\,\,\left( {t \in R} \right)\)

Lời giải chi tiết:

Đường thẳng \(d\) qua \(A\) có vectơ chỉ phương \(\overrightarrow {AB}  = \left( {2; - 1;3} \right)\) nên phương trình tham số của \(d\) có dạng:\(\left\{ \matrix{x = 1 + 2t \hfill \cr y = - t \hfill \cr z = - 3 + 3t \hfill \cr} \right.(t ∈ \mathbb{R})\)

LG b

Đi qua điểm \(M(2 ; 3 ; -5)\) và song song với đường thẳng \(∆\) có phương trình \(\left\{ \matrix{x = - 2 + 2t \hfill \cr y = 3 - 4t \hfill \cr z = - 5t. \hfill \cr} \right.\)

Lời giải chi tiết:

Đường thẳng \(d // ∆\).

Mà \(\overrightarrow u_{\Delta} (2, -4, -5)\) là VTCP của \(∆\) nên \(\overrightarrow {u_{d}}= (2, -4, -5)\) là VTCP của d.

d đi qua M(2;3;-5) và nhận \(\overrightarrow {u_{d}}= (2, -4, -5)\) là VTCP nên phương trình tham số của đường thẳng \(d\) là:

\(\left\{ \matrix{x = 2 + 2t \hfill \cr y = 3 - 4t \hfill \cr z = - 5 - 5t \hfill \cr} \right. (t ∈ \mathbb{R})\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
3.7 trên 9 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài