Bài 3 trang 94 SGK Hình học 12


Giải bài 3 trang 94 SGK Hình học 12. Toạ độ của tâm hình bình hành OADB là:

Đề bài

Trong không gian \(Oxyz\) cho ba vectơ \(\overrightarrow a  = ( - 1;1;0)\), \(\overrightarrow b  = (1;1;0)\) và \(\overrightarrow c  = (1;1;1)\)

Cho hình bình hành \(OADB\) có \(\overrightarrow {OA} \) = \(\overrightarrow a \), \(\overrightarrow {OB}  = \overrightarrow b \) (\(O\) là gốc toạ độ). Toạ độ của tâm hình bình hành \(OADB\) là:

(A) \((0 ; 1 ; 0)\)                      (B) \((1 ; 0 ; 0)\)

(C) \((1 ; 0 ; 1)\)                      (D) \((1 ; 1 ; 0)\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Gọi I là tâm hình bình hành OADB ta có: \(\overrightarrow {OA}  + \overrightarrow {OB}  = 2\overrightarrow {OI} \)

Lời giải chi tiết

 

Gọi \(I\) là tâm của hình bình hành ta có:

\(\begin{array}{l}
\overrightarrow {OA} + \overrightarrow {OB} = 2\overrightarrow {OI} \\
\Rightarrow \overrightarrow {OI} = \dfrac{1}{2}\left( {\overrightarrow {OA} + \overrightarrow {OB} } \right) = \dfrac{1}{2}\left( {\overrightarrow a + \overrightarrow b } \right)\\
= \dfrac{1}{2}\left( {0;2;0} \right) = \left( {0;1;0} \right)
\end{array}\)

Vậy \(I(0;1;0)\)

Chọn (A).

Cách khác:

\(\overrightarrow {OA}  = \left( { - 1;1;0} \right) \Rightarrow A\left( { - 1;1;0} \right)\)

\(\overrightarrow {OB}  = \left( {1;1;0} \right) \Rightarrow B\left( {1;1;0} \right)\)

Vì \(I\) là tâm hình bình hành nên \(I\) là trung điểm \(AB\)

\( \Rightarrow \left\{ \begin{array}{l}{x_I} = \dfrac{{{x_A} + {x_B}}}{2} = \dfrac{{ - 1 + 1}}{2} = 0\\{y_I} = \dfrac{{{y_A} + {y_B}}}{2} = \dfrac{{1 + 1}}{2} = 1\\{z_I} = \dfrac{{{z_A} + {z_B}}}{2} = \dfrac{{0 + 0}}{2} = 0\end{array} \right.\) \( \Rightarrow I\left( {0;1;0} \right)\)

Loigiaihay.com


Bình chọn:
3.5 trên 6 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài