Bài 5 trang 95 SGK Hình học 12


Giải bài 5 trang 95 SGK Hình học 12. Gọi M, N lần lượt là trung điểm của AB và CD. Toạ độ điểm G là trung điểm của MN là:

Đề bài

Trong không gian \(Oxyz\) cho bốn điểm \(A(1; 0; 0), B(0; 1; 0), C(0; 0; 1)\) và \(D(1; 1; 1)\)

Gọi \(M, N\) lần lượt là trung điểm của \(AB\) và \(CD\). Toạ độ điểm \(G\) là trung điểm của \(MN\) là:

(A) G \(\left( {{1 \over 3};{1 \over 3};{1 \over 3}} \right)\) ;       (B) G \(\left( {{1 \over 4};{1 \over 4};{1 \over 4}} \right)\) ;

(C) G \(\left( {{2 \over 3};{2 \over 3};{2 \over 3}} \right)\) ;       (D) G \(\left( {{1 \over 2};{1 \over 2};{1 \over 2}} \right)\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

\(A\left( {{x_A};{y_A};{z_A}} \right);\,\,B\left( {{x_B};{y_B};{z_B}} \right)\), điểm M là trung điểm của AB \( \Rightarrow M\left( {\frac{{{x_A} + {x_B}}}{2};\frac{{{y_A} + {y_B}}}{2};\frac{{{z_A} + {z_B}}}{2}} \right)\).

Lời giải chi tiết

M là trung điểm của AB \( \Rightarrow M\left( {\frac{{1 + 0}}{2};\frac{{0 + 1}}{2};\frac{{0 + 0}}{2}} \right) = \left( {\frac{1}{2};\frac{1}{2};0} \right)\)

N là trung điểm của CD \( \Rightarrow N\left( {\frac{{0 + 1}}{2};\frac{{0 + 1}}{2};\frac{{1 + 1}}{2}} \right) = \left( {\frac{1}{2};\frac{1}{2};1} \right)\)

G là trung điểm của MN \( \Rightarrow G\left( {\frac{{\frac{1}{2} + \frac{1}{2}}}{2};\frac{{\frac{1}{2} + \frac{1}{2}}}{2};\frac{{0 + 1}}{2}} \right) = \left( {\frac{1}{2};\frac{1}{2};\frac{1}{2}} \right)\)

Chọn (D)

Loigiaihay.com


Bình chọn:
3.5 trên 6 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài