Bài 2 trang 91 SGK Hình học 12


Giải bài 2 trang 91 SGK Hình học 12. Trong hệ toạ độ Oxyz, cho mặt cầu (S) có đường kính là AB

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Trong hệ toạ độ \(Oxyz\), cho mặt cầu \((S)\) có đường kính là \(AB\) biết rằng \(A( 6 ; 2 ; -5), B(-4 ; 0 ; 7)\).

LG a

a) Tìm toạ độ tâm \(I\) và tính bán kính \(r\) của mặt cầu \((S)\)

Phương pháp giải:

Tâm I là trung điểm của AB: \(I\left( {\frac{{{x_A} + {x_B}}}{2};\frac{{{y_A} + {y_B}}}{2};\frac{{{z_A} + {z_B}}}{2}} \right)\) và bán kính \(R = \frac{{AB}}{2}\).

Lời giải chi tiết:

Tâm \(I\) của mặt cầu là trung điểm của đoạn thẳng \(AB\): \(I\left( {\frac{{{x_A} + {x_B}}}{2};\frac{{{y_A} + {y_B}}}{2};\frac{{{z_A} + {z_B}}}{2}} \right) = \left( {1;1;1} \right)\)                 

\(A{B^2} = {\rm{ }}{\left( { - 4{\rm{ }} - {\rm{ }}6} \right)^2} + {\rm{ }}{\left( {{\rm{ }}0{\rm{ }} - {\rm{ }}2} \right)^2} + {\rm{ }}{\left( {7{\rm{ }} + {\rm{ }}5} \right)^2} = {\rm{ }}248\)

\( \Rightarrow AB = \sqrt {248}  = 2\sqrt {62} \)

Vậy \(R = {{AB} \over 2} = \sqrt {62} \)

LG b

b) Lập phương trình của mặt cầu \((S)\).

Phương pháp giải:

Phương trình mặt cầu tâm \(I\left( {{x_0};{y_0};{z_0}} \right)\) và có bán kính \(R\) có dạng: \({\left( {x - {x_0}} \right)^2} + {\left( {y - {y_0}} \right)^2} + {\left( {z - {z_0}} \right)^2} = {R^2}\)

Lời giải chi tiết:

Phương trình mặt cầu \((S)\)

\({\left( {x{\rm{ }} - {\rm{ }}1} \right)^2}{\rm{ }} + {\rm{ }}{\left( {y{\rm{ }} - {\rm{ }}1} \right)^2} + {\rm{ }}{\left( {z{\rm{ }} - {\rm{ }}1} \right)^{2}} = {\rm{ }}62\)

\( \Leftrightarrow \) \({x^2}{\rm{ }} + {\rm{ }}{y^2} + {\rm{ }}{z^2} - {\rm{ }}2x{\rm{ }} - {\rm{ }}2y{\rm{ }} - {\rm{ }}2z{\rm{ }} - {\rm{ }}59{\rm{ }} = {\rm{ }}0\)

LG c

c) Lập phương trình của mặt phẳng \((α)\) tiếp xúc với mặt cầu \((S)\) tại điểm \(A\).

Phương pháp giải:

Mặt phẳng cần tìm đi qua A và nhận \( \overline {IA} \) là 1 VTPT.

Lời giải chi tiết:

Mặt phẳng tiếp xúc với mặt cầu tại điểm \(A\) chính là mặt phẳng qua \(A\) và vuông góc với bán kính \(IA\). Ta có:

\(\overrightarrow {IA}  = (5; 1 ; -6)\)

Phương trình mặt phẳng cần tìm là: \(5(x - 6) + 1(y - 2) - 6(z + 5) = 0\)

\( \Leftrightarrow 5x + y - 6z - 62 = 0\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.3 trên 15 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.


Góp ý Loigiaihay.com, nhận quà liền tay
Gửi bài