Trong hệ toạ độ \(Oxyz\), tìm toạ độ điểm \(A'\) đối xứng với điểm \(A(1 ; -2 ; -5)\) qua đường thẳng \(∆\) có phương trình \(\left\{ \matrix{x = 1 + 2t \hfill \cr y = - 1 - t \hfill \cr z = 2t. \hfill \cr} \right.\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
+) Xác định tọa độ điểm H là hình chiếu của A trên đường thẳng \(\Delta\).
- Gọi (P) là mặt phẳng đi qua A và vuông góc với \(\Delta\). Tìm phương trình mặt phẳng (P).
- Khi đó H là giao điểm của \(\Delta\) và mặt phẳng (P).
+) Điểm M' đối xứng với M qua \(\Delta\) khi và chỉ khi H là trung điểm của MM', từ đó suy ra tọa độ điểm M'.
Lời giải chi tiết
Gọi \(H\left( {1 + 2t; - 1 - t;2t} \right) \in \Delta \) là hình chiếu của \(A\) trên \(\Delta \).
\(H = \Delta \cap \left( P \right) \Rightarrow H \in \Delta \Rightarrow H\left( {1 + 2t; - 1 - t;2t} \right)\), thay tọa độ điểm H vào phương trình mặt phẳng (P) ta có: \(2(1 + 2t) + (1 + t) + 4t + 6 = 0\)
Giải bài 9 trang 95 SGK Hình học 12. Gọi (α) là mặt phẳng cắt ba trục toạ độ tại 3 điểm M(8 ; 0 ; 0), N(0 ; -2 ; 0), P(0 ; 0 ; 4). Phương trình của (α) là:
>> Luyện thi TN THPT & ĐH năm 2023 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.