Bài 11 trang 93 SGK Hình học 12

Bình chọn:
3.7 trên 6 phiếu

Giải bài 11 trang 93 SGK Hình học 12. Trong hệ toạ độ Oxyz, viết phương trình đường thẳng ∆

Đề bài

Viết phương trình đường thẳng \(∆\) vuông góc với mặt phẳng toạ độ \((Oxz)\) và cắt hai đường thẳng

\(d:\,\,\left\{ \begin{array}{l}x = t\\y = - 4 + t\\z = 3 - t\end{array} \right.\,d':\,\,\left\{ \begin{array}{l}x = 1 - 2t'\\y = - 3 + t'\\z = 4 - 5t'\end{array} \right.\)

Phương pháp giải - Xem chi tiết

- Gọi tọa độ hai giao điểm lần lượt thuộc hai đường thẳng theo tham số \(t,t'\).

- Lập hệ phương trình ẩn \(t,t'\) dựa vào điều kiện \(MN ⊥ (Oxz)\) nên \(MN ⊥ Ox\) và \(MN ⊥ Oz\).

Lời giải chi tiết

Gọi \(M\) là điểm thuộc đường thẳng \(d\), toạ độ của \(M\) là \(M( t; -4 + t; 3 - t)\). \(N\) là điểm thuộc đường thẳng \(d'\), toạ độ của \(N\) là \(N(1 - 2t'; -3 + t'; 4 - 5t')\).

Ta có: \(\overrightarrow {MN}= (1 - 2t' - t; 1 + t' - t; 1 - 5t' + t)\)

Vì \(MN ⊥ (Oxz)\) nên \(MN ⊥ Ox\) và \(MN ⊥ Oz\)

\(Ox\) có vectơ chỉ phương \(\overrightarrow i = (1; 0; 0)\);

\(Oz\) có vectơ chỉ phương \(\overrightarrow j  = (0; 0; 1)\).

\(MN ⊥ Ox\)

\( \Leftrightarrow (1 - 2t' - t).1 + (1 + t' - t).0 + (1 - 5t' + t).0 = 0\)

\( \Leftrightarrow 1 - 2t' - t = 0\)                 (1)

\(MN ⊥ Oz\)

\( \Leftrightarrow (1 - 2t' - t).0 + (1 + t' - t).0 + (1 - 5t' + t).1 = 0\)

\( \Leftrightarrow 1 - 5t' + t = 0\)                 (1)

Từ (1) và (2) ta có hệ\(\left\{ \begin{array}{l}1 - 2t' - t = 0\\1 - 5t' + t = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t = \frac{3}{7}\\t' = \frac{2}{7}\end{array} \right.\)

và được toạ độ của M\(\left( {{3 \over 7}; - {{25} \over 7};{{18} \over 7}} \right)\) , N\(\left( {{3 \over 7}; - {{19} \over 7};{{18} \over 7}} \right)\)

Từ đây ta có \(\overrightarrow {MN}  = \left( {0;\frac{6}{7};0} \right) = \frac{6}{7}\left( {0;1;0} \right)\) và được phương trình đường thẳng \(MN\) đi qua M và nhận \(\overrightarrow u  = \left( {0;1;0} \right)\) làm 1 VTCP là:\(\left\{ \matrix{x = {3 \over 7} \hfill \cr y = - {{25} \over 7} + t \hfill \cr z = {{18} \over 7} \hfill \cr} \right.  (t \in R)\)

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>>Học trực tuyến luyện thi THPTQG, Đại học 2020, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới nâng cao.