Bài 8 trang 93 SGK Hình học 12


Giải bài 8 trang 93 SGK Hình học 12. Trong hệ toạ độ Oxyz, viết phương trình mặt phẳng (α) tiếp xúc với mặt cầu

Đề bài

Trong hệ toạ độ \(Oxyz\), viết phương trình mặt phẳng \((α)\) tiếp xúc với mặt cầu

(S): \({x^2} + {y^2} + {z^2} - 10x + 2y + 26z + 170 = 0\)

và song song với hai đường thẳng

\(d:\,\,\left\{ \begin{array}{l}
x = - 5 + 2t\\
y = 1 - 3t\\
z = - 13 + 2t
\end{array} \right.\,\,\,\,\,\,\,d':\,\,\left\{ \begin{array}{l}
x = - 7 + 3t'\\
y = - 1 - 2t'\\
z = 8
\end{array} \right.\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

+) Gọi \(\overrightarrow a ;\overrightarrow {a'} \) lần lượt là VTCP của hai đường thẳng d và d'. Khi đó mặt phẳng \((\alpha)\) nhận \(\overrightarrow n  = \left[ {\overrightarrow a ;\overrightarrow {a'} } \right]\) là 1 VTPT.

+) Xác định tâm I và bán kính R của mặt cầu (S), mặt phẳng \((\alpha)\) tiếp xúc với mặt cầu (S) \( \Leftrightarrow d\left( {I;\left( \alpha  \right)} \right) = R\)

Lời giải chi tiết

Đường thẳng \(\displaystyle d\) có vectơ chỉ phương \(\displaystyle \overrightarrow a = (2; -3; 2)\)

\(\displaystyle d'\) có vectơ chỉ phương \(\displaystyle \overrightarrow {a'}  = (3; -2; 0)\)

Mặt phẳng \(\displaystyle (α)\) song song với \(\displaystyle d\) và \(\displaystyle d'\) nhận vectơ \(\displaystyle \overrightarrow n  = \left[ {\overrightarrow a ,\overrightarrow {a'} } \right] =(4;6;5)\) làm vectơ pháp tuyến.

Phương trình mặt phẳng \(\displaystyle (α)\) có dạng: \(\displaystyle 4x + 6y + 5z + D = 0\)

Mặt cầu \(\displaystyle (S)\) có tâm \(\displaystyle I(5; -1; -13)\) và bán kính \(\displaystyle R = \sqrt {{{\left( { - 5} \right)}^2} + {1^2} + {{\left( { - 13} \right)}^2} - 170}  = \sqrt {25}  = 5\).

Để \(\displaystyle (α)\) tiếp xúc với mặt cầu \(\displaystyle (S)\), ta phải có:

\(\displaystyle d(I, (α)) = R  \) \(\displaystyle \Leftrightarrow {{\left| {4.5 + 6( - 1) + 5( - 13) + D} \right|} \over {\sqrt {{4^2} + {6^2} + {5^2}} }} = 5\) \(\displaystyle  \Leftrightarrow \left| {D - 51} \right| = 5\sqrt {77} \)

Ta được hai mặt phẳng thoả mãn yêu cầu:

+) \(\displaystyle D - 51 = 5\sqrt{77}\) \(\displaystyle  \Rightarrow ({\alpha _1}):4x + 6y + 5z + 51 + 5\sqrt {77}  = 0\)

+) \(\displaystyle D - 51 = -5\sqrt{77}\) \(\displaystyle  \Rightarrow ({\alpha _2}):4x + 6y + 5z + 51 - 5\sqrt {77}  = 0\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
3.4 trên 7 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 12 - Xem ngay

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài