 Giải toán 11, giải bài tập toán lớp 11 đầy đủ đại số và giải tích, hình học
                                                
                            Giải toán 11, giải bài tập toán lớp 11 đầy đủ đại số và giải tích, hình học
                         Bài 2. Hai đường thẳng vuông góc
                                                        Bài 2. Hai đường thẳng vuông góc
                                                    Bài 7 trang 98 SGK Hình học 11>
Cho S là diện tích tam giác ABC...
Đề bài
Cho \(S\) là diện tích tam giác \(ABC\). Chứng minh rằng:
\(S=\dfrac{1}{2}\sqrt{\overrightarrow{AB}^{2}.\overrightarrow{AC}^{2}-(\overrightarrow{AB}.\overrightarrow{AC})^{2}}.\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Sử dụng các công thức:
\(\begin{array}{l}{S_{ABC}} = \dfrac{1}{2}AB.AC.\sin A\\\sin A = \sqrt {1 - {{\cos }^2}A} \\\cos A = \dfrac{{\overrightarrow {AB} .\overrightarrow {AC} }}{{\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AC} } \right|}}\end{array}\)
Lời giải chi tiết
\(S_{ABC}=\dfrac{1}{2}AB.AC.\sin A\) \(=\dfrac{1}{2}AB.AC.\sqrt{1-\cos^{2}A}\)
\(=\dfrac{1}{2}AB.AC.\sqrt{1-\left(\dfrac{\overrightarrow{AB}.\overrightarrow{AC}}{|\overrightarrow{AB}|.|\overrightarrow{AC}|} \right )^{2}}\)
\( = \dfrac{1}{2}\sqrt {A{B^2}.A{C^2} - A{B^2}A{C^2}.\dfrac{{{{\left( {\overrightarrow {AB} .\overrightarrow {AC} } \right)}^2}}}{{{{\left| {\overrightarrow {AB} } \right|}^2}.{{\left| {\overrightarrow {AC} } \right|}^2}}}} \)
\( = \dfrac{1}{2}\sqrt {{{\overrightarrow {AB} }^2}.{{\overrightarrow {AC} }^2} - A{B^2}.A{C^2}.\dfrac{{{{\left( {\overrightarrow {AB} .\overrightarrow {AC} } \right)}^2}}}{{A{B^2}.A{C^2}}}} \)
\(=\dfrac{1}{2}\sqrt{\overrightarrow{AB}^{2}.\overrightarrow{AC}^{2}-(\overrightarrow{AB}.\overrightarrow{AC})^{2}}.\)
Loigiaihay.com
 Bình luận
Bình luận
                                                 Chia sẻ
 Chia sẻ 
                 
                 
                                     
                                     
        
 
                                            




 
             
            