Bài 4 trang 98 SGK Hình học 11


Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa - GDCD

Đề bài

Trong không gian cho hai tam giác đều \(ABC\) và \(ABC'\) có chung cạnh \(AB\) và nằm trong hai mặt phẳng khác nhau. Gọi \(M, N, P, Q\) lần lượt là trung điểm của các cạnh \(AC, CB, BC', C'A,\) Chứng minh rắng:

a) \(AB ⊥ CC'\);

b) Tứ giác \(MNPQ\) là hình chữ nhật.

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

a) Chứng minh \(\overrightarrow {AB} .\overrightarrow {CC'}  = 0\).

b) Dựa vào tính chất của đường trung bình của tam giác, chứng minh \(MNPQ\) là hình bình hành, từ đó chứng minh \(MNPQ\) là hình chữ nhật.

Lời giải chi tiết

a) \(\overrightarrow{AB}.\overrightarrow{CC'}=\overrightarrow{AB}.(\overrightarrow{AC'}-\overrightarrow{AC})\)

\(=\overrightarrow{AB}.\overrightarrow{AC'}-\overrightarrow{AB}.\overrightarrow{AC}\)

\(=AB.AC'.\cos \widehat {BAC'}-AB.AC.\cos\widehat {BAC}\)

\( = a.a.\dfrac{1}{2} - a.a.\dfrac{1}{2} = 0\)

 \(\Rightarrow AB ⊥ CC'\).

b) Theo giả thiết \(Q,P\) là trung điểm của \(AC',BC'\) do đó \(QP\) là đường trung bình của tam giác \(ABC'\)

Suy ra: \(QP//AB,QP={1\over 2}AB\)      (1)

Chứng minh tương tự ta có:

\(PN//CC',PN={1\over 2}CC'\)

\(MN//AB,MN={1\over 2}AB\)              (2)

Từ (1) và (2) suy ra: \(MN//QP,MN=QP\). Do đó \(MNPQ\) là hình bình hành.

Ta có: \(MN//AB\), \(PN//CC'\) mà \(AB\bot CC'\) do đó \(MN\bot NP\)

Hình bình hành \(MNPQ\) có một góc vuông nên \(MNPQ\) là hình chữ nhật.

Loigiaihay.com


Bình chọn:
4.2 trên 29 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.