Bài 2 trang 97 SGK Hình học 11

Bình chọn:
4.2 trên 10 phiếu

Giải bài 2 trang 97 SGK Hình học 11. Cho hình tứ diện ABCD...

Đề bài

Cho hình tứ diện \(ABCD\). 

a) Chứng minh rằng: \(\overrightarrow{AB}.\overrightarrow{CD}+\overrightarrow{AC}.\overrightarrow{DB}+\overrightarrow{AD}.\overrightarrow{BC}=0.\)

b) Từ đẳng thức trên hãy suy ra rằng nếu tứ diện \(ABCD\) có \(AB ⊥ CD\) và \(AC ⊥ DB\) thì \(AD ⊥ BC\). 

Phương pháp giải - Xem chi tiết

Sử dụng quy tắc ba điểm.

Lời giải chi tiết

a) \(\overrightarrow{AB}.\overrightarrow{CD}=\overrightarrow{AB}.(\overrightarrow{AD}-\overrightarrow{AC})\)

    \(\overrightarrow{AC}.\overrightarrow{DB}=\overrightarrow{AC}.(\overrightarrow{AB}-\overrightarrow{AD})\)

    \(\overrightarrow{AD}.\overrightarrow{BC}=\overrightarrow{AD}.(\overrightarrow{AC}-\overrightarrow{AB}).\)

Cộng từng vế ba đẳng thức trên ta được đẳng thức phải chứng minh.

b) \(AB ⊥ CD \Rightarrow \overrightarrow{AB}.\overrightarrow{CD}=0,\)

    \(AC ⊥ DB \Rightarrow \overrightarrow{AC}.\overrightarrow{DB}=0\)

Từ đẳng thức câu a ta có:

\(\Rightarrow\overrightarrow{AD}.\overrightarrow{BC}=0\Rightarrow AD ⊥ BC\).

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

Các bài liên quan: - Bài 2. Hai đường thẳng vuông góc

>>Học trực tuyến các môn lớp 11, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu