Bài 6 trang 74 SGK Đại số và Giải tích 11

Bình chọn:
4.5 trên 25 phiếu

Giải bài 6 trang 74 SGK Đại số và Giải tích 11. Hai bạn nam và hai bạn nữ được xếp ngồi ngẫu nhiên vào bốn ghế

Đề bài

Hai bạn nam và hai bạn nữ được xếp ngồi ngẫu nhiên vào bốn ghế xếp thành hai dãy đối diện nhau. Tính xác suất sao cho:

a) Nam, nữ ngồi đối diện nhau;

b) Nữ ngồi đối diện nhau.

Phương pháp giải - Xem chi tiết

a) +) Mỗi cách xếp \(4\) bạn vào \(4\) chỗ ngồi là một hoán vị của \(4\) phần tử. Tính số phần tử của không gian mẫu.

+) Gọi A là biến cố: "Nam, nữ ngồi đối diện nha" \( \Rightarrow \overline A \) là biến cố: "Nam đối diện nam, nữ đối diện nữ".

Tính xác suất của biến cố \( \Rightarrow \overline A \) và sử dụng công thức \(P\left( A \right) + P\left( {\overline A } \right) = 1\).

b) Vì chỉ có \(4\) người: \(2\) nam và \(2\) nữ nên nếu \(2\) nữ ngồi đối diện nhau thì \(2\) nam cũng ngồi đối diện nhau chính là biến cố \(\overline A \) ở câu a).

Lời giải chi tiết

Mỗi cách xếp \(4\) bạn vào \(4\) chỗ ngồi là một hoán vị của \(4\) phần tử, vì vậy không gian mẫu có \(4! = 24\) phần tử.

a) Gọi A là biến cố: "Nam, nữ ngồi đối diện nha" \( \Rightarrow \overline A \) là biến cố: "Nam đối diện nam, nữ đối diện nữ".

Trong các cách xếp chỗ như vậy thì \(2\) nữ phải ngồi đối diện nhau, \(2\) nam cũng ngồi đối diện nhau.

+) Có \(4\) chỗ để cho bạn nữ thứ nhất chọn.

+) Với mỗi cách chọn chỗ của bạn nữ thứ nhất chỉ có duy nhất một chỗ (đối diện) cho bạn nữ thứ hai chọn.

+) Sau khi bai bạn nữ đã chọn chỗ ngồi (đối diện nhau) thì còn lại \(2\) chỗ (đối diện nhau) để xếp cho \(2\) bạn nam và có \(2!\) cách xếp chỗ cho \(2\) bạn này.

Vi vậy theo quy tắc nhân, tất cả có \(4 . 1 .2! = 8\) cách xếp chỗ cho nam nữ không ngồi đối diện nhau.

Do đó có \(8\) kết quả không thuận lợi cho biến cố \(A\): "Nam, nữ ngồi đối diện nhau".

Vậy xác suất xảy ra biến cố đối của \(A\) là \(P\)(\(\overline{A}\)) = \(\frac{8}{24}\) = \(\frac{1}{3}\).

\( \Rightarrow P(A) = 1 - P\)(\(\overline{A}\)) = \(\frac{2}{3}\).

b) Vì chỉ có \(4\) người: \(2\) nam và \(2\) nữ nên nếu \(2\) nữ ngồi đối diện nhau thì \(2\) nam cũng ngồi đối diện nhau. Do đó biến cố này chính là biến cố \(\overline{A}\): "Nữ ngồi đối diện nhau".

Xác suất xảy ra biến cố này là \(P\)(\(\overline{A}\)) = \(\frac{1}{3}\).

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

Các bài liên quan: - Bài 5. Xác suất và biến cố

>>Học trực tuyến các môn lớp 11, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu