Bài 2 trang 74 SGK Đại số và Giải tích 11


Có bốn tấm bìa được đánh số từ 1 đến 4. Rút ngẫu nhiên ba tấm.

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Có bốn tấm bìa được đánh số từ \(1\) đến \(4\). Rút ngẫu nhiên ba tấm.

LG a

Hãy mô tả không gian mẫu.

Phương pháp giải:

Liệt kê và đếm số phần tử của không gian mẫu \({n\left( \Omega  \right)}\)

Lời giải chi tiết:

Phép thử \(T\) được xét là: "Từ bốn tấm bìa đã cho, rút ngẫu nhiên ba tấm".

Không gian mẫu là:

\(Ω = \left\{{(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)}\right\}\)

Số phần tử của không gian mẫu là \(n(Ω) = 4\).

LG b

Xác định các biến cố sau:

\(A\): "Tổng các số trên ba tấm bìa bằng \(8\)";

\(B\): "Các số trên ba tấm bìa là ba số tự nhiên liên tiếp".

Phương pháp giải:

Liệt kê và đếm các phần tử của A, B.

Lời giải chi tiết:

\(A = \left\{{(1, 3, 4)}\right\}\), \(n(A)=1\)

\(B = {(1, 2, 3), (2, 3, 4)}, n(B)=2\)

LG c

Tính \(P(A), P(B)\).

Phương pháp giải:

Tính xác suất của biến cố A: \(P\left( A \right) = \frac{{n(A)}}{{{n\left( \Omega  \right)}}}\).

Lời giải chi tiết:

\(P\left( A \right) = \frac{{n(A)}}{{{n\left( \Omega  \right)}}}\) \(= \frac{1}{4};\)

\(P\left( B \right) = \frac{{n(B)}}{{{n\left( \Omega  \right)}}}= \frac{2}{4} = \frac{1}{2}\)

Loigiaihay.com


Bình chọn:
4.6 trên 36 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

>> Luyện thi TN THPT & ĐH năm 2024 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.