Bài 4 trang 58 SGK Đại số và Giải tích 11

Bình chọn:
4.5 trên 17 phiếu

Giải bài 4 trang 58 SGK Đại số và Giải tích 11. Tìm số hạng không chứa x trong khai triển

Đề bài

Tìm số hạng không chứa \(x\) trong khai triển của \(\displaystyle{\left( {{x^3} + {1 \over x}} \right)^8}\)

Phương pháp giải - Xem chi tiết

Sử dụng khai triển nhị thức Newton: \({\left( {a + b} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{a^{n-k}}{b^{k}}} \,\,\left( {k \in Z} \right)\)

Sử dụng các công thức nhân, chia lũy thừa cùng cơ số: \({x^m}.{x^n} = {x^{m + n}};\,\,\dfrac{{{x^m}}}{{{x^n}}} = {x^{m - n}}\).

Để tìm hệ số của số hạng không chứa \(x\) ta cho số mũ của x bằng 0, giải phương trình tìm \(k\)

Lời giải chi tiết

Ta có: \(\displaystyle{\left( {{x^3} + {1 \over x}} \right)^8}\) \(\displaystyle = \sum\limits_{k = 0}^8 {C_8^k} .{\left( {{x^3}} \right)^{8 - k}}{\left( {{1 \over x}} \right)^k}\) \( \displaystyle = \sum\limits_{k = 0}^8 {C_8^k} .{x^{3.(8 - k)}}{\left( {{1 \over x}} \right)^k}\) \( = \sum\limits_{k = 0}^8 {C_8^k} .{x^{24 - 4k}}\)

Trong tổng \(\sum\limits_{k = 0}^8 {C_8^k} .{x^{24 - 4k}}\) số hạng không chứa \(x\) khi và chỉ khi \(\left\{ \begin{array}{l}24 - 4k = 0\\k \in \left[ {0;8} \right]\end{array} \right. \Leftrightarrow k = 6\)

Vậy số hạng không chứa \(x\) trong khai triển (theo công thức nhị thức Niu - Tơn) của biểu thức đã cho là \(C_8^6 = 28\).

 Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

Các bài liên quan: - Bài 3. Nhị thức Niu - Tơn

>>Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Gửi văn hay nhận ngay phần thưởng