Bài 3 trang 92 SGK Hình học 12


Trong hệ toạ độ Oxyz, cho bốn điểm A(-2 ; 6 ; 3), B(1 ; 0 ; 6), C(0; 2 ; -1), D(1 ; 4 ; 0).

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Trong hệ toạ độ \(Oxyz\), cho bốn điểm \(A(-2 ; 6 ; 3), B(1 ; 0 ; 6), C(0; 2 ; -1), D(1 ; 4 ; 0)\)

LG a

a) Viết phương trình mặt phẳng \((BCD)\). Suy ra \(ABCD\) là một tứ diện.

Phương pháp giải:

Mặt phẳng \((BCD)\) đi qua \(B\) và nhận \(\overrightarrow a  = \left[ {\overrightarrow {BC} ;\overrightarrow {BD} } \right]\) là 1 VTPT. Chứng minh ABCD là tứ diện bằng cách chứng minh \(A \notin \left( {BCD} \right)\)

Lời giải chi tiết:

Ta có: \(\overrightarrow {BC} = (-1; 2; -7)\),  \(\overrightarrow {BD}= (0; 4; -6)\)

Xét vectơ \(\overrightarrow a  = \left[ {\overrightarrow {BC} ,\overrightarrow {BD} } \right]\)    \( \Rightarrow \overrightarrow a  = (16; - 6; - 4) = 2(8; - 3; - 2)\)

Mặt phẳng \((BCD)\) đi qua \(B\) và nhận \(\overrightarrow {a'}  = (8; -3; -2)\) làm vectơ pháp tuyến nên có phương trình:

\(8(x - 1) -3y - 2(z - 6) = 0\) \( \Leftrightarrow  8x - 3y - 2z + 4 = 0\)

Thay toạ độ của \(A\) vào phương trình của \((BC)\) ta có:

\(8.(-2) - 3.6 - 2.3 + 4 = -36 ≠ 0\)

Điều này chứng tỏ điểm \(A\) không thuộc mặt phẳng \((BCD)\) hay bốn điểm \(A, B, C, D\) không đồng phẳng, và \(ABCD\) là một tứ diện.

Quảng cáo

Lộ trình SUN 2026

LG b

b) Tính chiều cao \(AH\) của tứ diện \(ABCD\)

Phương pháp giải:

\(AH = d\left( {A;\left( {BCD} \right)} \right)\)

Lời giải chi tiết:

Chiều cao \(AH\) của tứ diện chính là khoảng cách từ \(A\) đến mặt phẳng \((BCD)\):

\(AH = d(A,(BCD))\) = \({{\left| {8.( - 2) - 3.6 - 2.3 + 4} \right|} \over {\sqrt {{8^2} + {{( - 3)}^2} + {{( - 2)}^2}} }} = {{36} \over {\sqrt {77} }}\)

LG c

c) Viết phương trình mặt phẳng \((α)\) chứa \(AB\) và song song với \(CD\).

Phương pháp giải:

\({\overrightarrow n _{\left( \alpha  \right)}} = \left[ {\overrightarrow {AB} ;\overrightarrow {CD} } \right]\) là 1 VTPT của mặt phẳng \((\alpha)\) và \((\alpha)\) đi qua A.

Lời giải chi tiết:

Ta có: \(\overrightarrow {AB}  = (3; - 6; 3)\), \(\overrightarrow {CD}  = ( 1; 2; 1)\)

Mặt phẳng \((α)\) chứa \(AB\) và \(CD\) chính là mặt phẳng đi qua \(A(-2; 6; 3)\) và nhận cặp vectơ \(\overrightarrow {AB} \), \(\overrightarrow {CD} \) làm cặp vectơ chỉ phương, có vectơ pháp tuyến \(\overrightarrow n  = \left[ {\overrightarrow {AB} ,\overrightarrow {CD} } \right]\)

Ta có: \(\overrightarrow {AB}  = \left( {3; - 6;3} \right);\,\,\overrightarrow {CD}  = \left( {1;2;1} \right)\)

\(\Rightarrow \overrightarrow n \) = \((-12; 0; 12) = -12(1; 0; -1)\)

Vậy phương trình của \((α)\) là:

\(1(x + 2) + 0(y - 6) - 1(z - 3) = 0 \)\( \Leftrightarrow x - z + 5 = 0\)

Loigiaihay.com


Bình chọn:
3.7 trên 17 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí