Bài 3 trang 29 SGK Hình học 11


Giải bài 3 trang 29 SGK Hình học 11. Chứng minh rằng khi thực hiện liên tiếp hai phép vị tự tâm O sẽ được một phép vị tự tâm O

Đề bài

Chứng minh rằng khi thực hiện liên tiếp hai phép vị tự tâm \(O\) sẽ được một phép vị tự tâm \(O\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Sử dụng khái niệm phép vị tự: Phép vị tự tâm I tỉ số k biến M thành điểm M' \( \Rightarrow \overrightarrow {IM'}  = k\overrightarrow {IM} \).

Lời giải chi tiết

Với mỗi điểm \(M\), gọi:

\(M'\) = \({V_{(O,k)}}(M)\)

\(M''={V_{(O,p)}}(M')\)

Khi đó:

\(\overrightarrow{OM'}\) = \(k \overrightarrow{OM}\)

\(\overrightarrow{OM''}\) = \(p\overrightarrow{OM'}\) 

Suy ra: \(\overrightarrow{OM''}\) = \(p\overrightarrow{OM'}\) = \(pk\overrightarrow{OM}\)

Từ đó suy ra \(M''= {V_{(O,pk)}} (M)\).

Vậy thực hiện liên tiếp hai phép vị tự \({V_{(O,k)}}^{}\) và \({V_{(O,p)}}^{}\) sẽ được phép vị tự \({V_{(O,pk)}}^{}\).

 Loigiaihay.com


Bình chọn:
4.5 trên 28 phiếu

Các bài liên quan: - Bài 7. Phép vị tự

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

>>Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài