Bài 3 trang 29 SGK Hình học 11


Đề bài

Chứng minh rằng khi thực hiện liên tiếp hai phép vị tự tâm \(O\) sẽ được một phép vị tự tâm \(O\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

+) \({V_{\left( {O,k} \right)}}(M) = M' \Leftrightarrow \overrightarrow {OM'}  = k\overrightarrow {OM} .\)

Lời giải chi tiết

Với mỗi điểm \(M\), gọi:

\(M'\) = \({V_{(O,k)}}(M)\)

\(M''={V_{(O,p)}}(M')\)

Khi đó:

\(\overrightarrow{OM'}\) = \(k \overrightarrow{OM}\)

\(\overrightarrow{OM''}\) = \(p\overrightarrow{OM'}\) 

Suy ra: \(\overrightarrow{OM''}\) = \(p\overrightarrow{OM'}\) = \(pk\overrightarrow{OM}\)

Từ đó suy ra \(M''= {V_{(O,pk)}} (M)\).

Vậy thực hiện liên tiếp hai phép vị tự \({V_{(O,k)}}^{}\) và \({V_{(O,p)}}^{}\) sẽ được phép vị tự \({V_{(O,pk)}}^{}\).

 Loigiaihay.com


Bình chọn:
4.5 trên 31 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.