Bài 4.57 trang 174 SBT đại số và giải tích 11>
Giải bài 4.57 trang 174 sách bài tập đại số và giải tích 11. Xét tính liên tục của hàm số ...
Đề bài
Xét tính liên tục của hàm số
\(f\left( x \right) = \left\{ \matrix{
{{{x^2} + 5x + 4} \over {{x^3} + 1}},\,\,{\rm{ nếu }}\,\,x \ne - 1 \hfill \cr
1{\rm{ , \,\,nếu }}\,\,x = - 1 \hfill \cr} \right.\) trên tập xác định của nó.
Phương pháp giải - Xem chi tiết
Xét tính liên tục của hàm số tại \(x=-1\) và kết luận.
Lời giải chi tiết
Khi \(x\ne -1\) thì \(f(x)\) là hàm phân thức nên liên tục trên các khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( { - 1; + \infty } \right)\)
Ta có:
\(\begin{array}{l}\mathop {\lim }\limits_{x \to - 1} f\left( x \right) = \mathop {\lim }\limits_{x \to - 1} \dfrac{{{x^2} + 5x + 4}}{{{x^3} + 1}}\\ = \mathop {\lim }\limits_{x \to - 1} \dfrac{{\left( {x + 1} \right)\left( {x + 4} \right)}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}}\\ = \mathop {\lim }\limits_{x \to - 1} \dfrac{{x + 4}}{{{x^2} - x + 1}}\\ = \dfrac{{ - 1 + 4}}{{{{\left( { - 1} \right)}^2} - \left( { - 1} \right) + 1}}\\ = 1\end{array}\)
Mà \(f\left( { - 1} \right) = 1\) nên \(\mathop {\lim }\limits_{x \to - 1} f\left( x \right) = f\left( { - 1} \right) = 1\)
Vậy hàm số đã cho liên tục tại \(x = - 1\).
Do đó hàm số liên tục trên R.
Loigiaihay.com
- Bài 4.58 trang 174 SBT đại số và giải tích 11
- Bài 4.59 trang 174 SBT đại số và giải tích 11
- Bài 4.60 trang 174 SBT đại số và giải tích 11
- Bài tập trắc nghiệm trang 175, 176 SBT đại số và giải tích 11
- Bài 4.61 trang 175 SBT đại số và giải tích 11
>> Xem thêm