Bài 2.50 trang 104 SBT hình học 10


Giải bài 2.50 trang 104 sách bài tập hình học 10. Cho tam giác ABC có ...

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Đề bài

Cho tam giác ABC có \(BC = a,CA = b,AB = c\). Chứng minh rằng \({b^2} - {c^2} = a(b\cos C - c\cos B)\)

Phương pháp giải - Xem chi tiết

Sử dụng các công thức \({b^2} = {a^2} + {c^2} - 2ac\cos B\) và \({c^2} = {a^2} + {b^2} - 2ab\cos C\) thay vào vế trái và biến đổi suy ra vế phải của đẳng thức cần chứng minh.

Lời giải chi tiết

Ta có \({b^2} = {a^2} + {c^2} - 2ac\cos B\)

\({c^2} = {a^2} + {b^2} - 2ab\cos C\)

\( \Rightarrow {b^2} - {c^2} = {c^2} - {b^2} + 2a(b\cos C - c\cos B)\)

\( \Rightarrow 2({b^2} - {c^2}) = 2a(b\cos C - c\cos B)\)

Hay \({b^2} - {c^2} = a(b\cos C - c\cos B)\)

  Loigiaihay.com


Bình chọn:
4 trên 5 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí!