Bài 1.70 trang 45 SBT hình học 10


Giải bài 1.70 trang 45 sách bài tập hình học 10. Cho hình chữ nhật ABCD. Gọi I là giao điểm của hai đường chéo AC và BD...

Đề bài

Cho hình chữ nhật \(ABCD\). Gọi \(I\) là giao điểm của hai đường chéo \(AC\) và \(BD\).

a) Với điểm \(M \) tùy ý, hãy chứng minh \(\overrightarrow {MA}  + \overrightarrow {MC}  = \overrightarrow {MB}  + \overrightarrow {MD} \);

b) Chứng minh rằng: \(\left| {\overrightarrow {AB}  + \overrightarrow {AD} } \right| = \left| {\overrightarrow {AB}  - \overrightarrow {AD} } \right|\)

Phương pháp giải - Xem chi tiết

a) Sử dụng công thức trung điểm \(\overrightarrow {MA}  + \overrightarrow {MB}  = 2\overrightarrow {MI} \) với \(I\) là trung điểm của \(AB\).

b) Tính tổng hiệu các véc tơ và suy ra điều phải chứng minh.

Lời giải chi tiết

a) Ta có: \(\overrightarrow {MA}  + \overrightarrow {MC}  = 2\overrightarrow {MI} \); \(\overrightarrow {MB}  + \overrightarrow {MD}  = 2\overrightarrow {MI} \)

Vậy \(\overrightarrow {MA}  + \overrightarrow {MC}  = \overrightarrow {MB}  + \overrightarrow {MD} \).

b) \(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \)\( \Rightarrow \left| {\overrightarrow {AB}  + \overrightarrow {AD} } \right| = AC\)

\(\overrightarrow {AB}  - \overrightarrow {AD}  = \overrightarrow {DB} \)\( \Rightarrow \left| {\overrightarrow {AB}  - \overrightarrow {AD} } \right| = DB\)

Vì hai đường chéo của hình chữ nhật dài bằng nhau nên \(AC = BD\) hay \(\left| {\overrightarrow {AB}  + \overrightarrow {AD} } \right| = \left| {\overrightarrow {AB}  - \overrightarrow {AD} } \right|\).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài