Bài 1.47 trang 42 SBT hình học 10


Giải bài 1.47 trang 42 sách bài tập hình học 10. Cho lục giác ABCDEF...

Đề bài

Cho lục giác đều \(ABCDEF\). Chọn hệ tọa độ \((O;\overrightarrow i ,\overrightarrow j )\), trong đó \(O\) là tâm của lục giác đều, hai véc tơ \(\overrightarrow i \) và \(\overrightarrow {OD} \) cùng hướng, \(\overrightarrow j \) và \(\overrightarrow {EC} \) cùng hướng . Tính tọa độ các đỉnh của lục giác biết độ dài của lục giác là \(6\).

Phương pháp giải - Xem chi tiết

Dựng hình, tính độ dài các đoạn thẳng và suy ra tọa độ cần tính.

Lời giải chi tiết

Từ hình vẽ ta thấy \(A\left( { - 6;0} \right)\) và \(D\left( {6;0} \right)\) (do các tam giác \(AOB\) và \(COD\) đều nên \(OA = OD = AB = 6\)).

Gọi \(H,K\) lần lượt là hình chiếu của \(C,B\) lên trục \(Ox\).

Khi đó \(CH = DC\sin {60^0} = \dfrac{{6\sqrt 3 }}{2} = 3\sqrt 3 \)

\(OH = \sqrt {O{C^2} - C{H^2}}  \) \(= \sqrt {{6^2} - {{\left( {3\sqrt 3 } \right)}^2}}  = 3\)

Do đó \(C\left( {3;3\sqrt 3 } \right)\).

B đối xứng với C qua Oy nên B(-3; 3√3)

E đối xứng với C qua Ox nên E(3; -3√3)

F đối xứng với C qua O nên F(-3; -3√3))

Vậy \(A\left( { - 6;0} \right)\), \(D\left( {6;0} \right)\), \(B\left( { - 3;3\sqrt 3 } \right)\), \(C\left( {3;3\sqrt 3 } \right)\), \(E\left( {3; - 3\sqrt 3 } \right)\), \(F\left( { - 3; - 3\sqrt 3 } \right)\) .

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 4: Hệ trục tọa độ

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài