Bài 1.45 trang 42 SBT hình học 10


Giải bài 1.45 trang 42 sách bài tập hình học 10. Cho tam giác ABC có...

Đề bài

Cho tam giác \(ABC\) có \(A( - 3;6),B(9; - 10),C( - 5;4)\)

a) Tìm tọa độ của trọng tâm \(G\) của tam giác \(ABC\).

b) Tìm tọa độ điểm \(D\) sao cho tứ giác \(BGCD\) là hình bình hành.

Phương pháp giải - Xem chi tiết

a) Sử dụng công thức tọa độ trọng tâm \(\left\{ \begin{array}{l}{x_G} = \dfrac{{{x_A} + {x_B} + {x_C}}}{3}\\{y_G} = \dfrac{{{y_A} + {y_B} + {y_C}}}{3}\end{array} \right.\)

b) Sử dụng tính chất hình bình hành \(\overrightarrow {BG}  = \overrightarrow {DC} \)

Lời giải chi tiết

a) Ta có: \(\left\{ \begin{array}{l}{x_G} = \dfrac{{ - 3 + 9 - 5}}{3} = \dfrac{1}{3}\\{y_G} = \dfrac{{6 - 10 + 4}}{3} = 0\end{array} \right.\)

b) Tứ giác \(BGCD\) là hình bình hành thì \(\overrightarrow {BG}  = \overrightarrow {DC} \)

\( \Leftrightarrow \left\{ \begin{array}{l}\dfrac{1}{3} - 9 =  - 5 - {x_D}\\0 - \left( { - 10} \right) = 4 - {y_D}\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}{x_D} = \dfrac{{11}}{3}\\{y_D} =  - 6\end{array} \right.\)

Vậy tọa độ điểm \(D\) là \(D\left( {\dfrac{{11}}{3}; - 6} \right)\).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 4: Hệ trục tọa độ

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài